首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2918篇
  免费   281篇
  国内免费   3篇
电工技术   15篇
综合类   2篇
化学工业   969篇
金属工艺   26篇
机械仪表   84篇
建筑科学   107篇
矿业工程   1篇
能源动力   83篇
轻工业   979篇
水利工程   14篇
石油天然气   15篇
无线电   100篇
一般工业技术   391篇
冶金工业   79篇
原子能技术   4篇
自动化技术   333篇
  2024年   9篇
  2023年   35篇
  2022年   41篇
  2021年   232篇
  2020年   121篇
  2019年   123篇
  2018年   135篇
  2017年   146篇
  2016年   133篇
  2015年   108篇
  2014年   176篇
  2013年   261篇
  2012年   251篇
  2011年   244篇
  2010年   154篇
  2009年   172篇
  2008年   164篇
  2007年   161篇
  2006年   96篇
  2005年   92篇
  2004年   69篇
  2003年   59篇
  2002年   44篇
  2001年   27篇
  2000年   22篇
  1999年   12篇
  1998年   16篇
  1997年   21篇
  1996年   15篇
  1995年   12篇
  1994年   5篇
  1993年   4篇
  1992年   3篇
  1991年   8篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1985年   3篇
  1984年   5篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
  1978年   2篇
  1976年   2篇
  1975年   1篇
  1972年   1篇
排序方式: 共有3202条查询结果,搜索用时 15 毫秒
1.
The objective of this study was to evaluate the influence of pH on rheological and viscoelastic properties of solutions based on blends of type A (GeA) or type B (GeB) gelatin and chitosan (CH). Solutions of GeA, GeB, CH, GeA:CH, and GeB:CH were prepared in several pH (3.5–6.0) and analyzed for determination of zeta-potential. Rheological analyses (stationary and dynamic essays) were carried out with blends allowing to study the effect of pH on shear stress, apparent viscosity, loss (G”) and storage (G’) moduli, and angle phase (Tanδ). Zeta potential of all biopolymers decreased linearly as a function of pH. CH presented higher values, and GeB, the lowest one, being the only having negative values at pH > 5. Overall, the pH influenced the rheological and viscoelastic properties of the colloidal solutions: shear stress and apparent viscosity increased as a function of pH. Other assays were carried out at 3% and 5% strain, for GeA:CH and GeB:CH, respectively. In the sol domain, G’ and G” (1 Hz) increased linearly for GeA:CH. But for GeB:CH, they increased in two linear different regions: one function between pH 3.5 and 5.0 and another one between 5.0 and 6.0, being a more important effect was visible in this last domain probably due to the negative net charge of gelatin, above it pI. An effect in two domains was also visible for Tanδ, explained in the same manner as previously. The GeB:CH blends behaved like diluted solutions, and transition temperatures increased as a function of pH.  相似文献   
2.
This research aimed at studying the potential use of monoglyceride (MG) structured emulsions (MSEs) as delivery and protective systems for probiotic bacteria in Ricotta cheese. To this purpose, a low-fat commercial Ricotta cheese was added with MSEs formulated with milk, as water phase, and sunflower oil (MSE-SO) or anhydrous milk fat (MSE-AMF), as lipid phase. A commercial whole milk Ricotta cheese (W-RC) was considered as reference. A probiotic Lacticaseibacillus rhamnosus strain was inoculated as free cells in W-RC or embedded into the MSEs and added to the low-fat Ricotta at the same reference fat content. After physico-chemical characterisation, L. rhamnosus viability and sample destructuring behaviour upon in vitro digestion were evaluated. At the end of in vitro digestion, both W-RC and sample containing MSE-SO were unable to protect cells. By contrast, sample with AMF ensured a sufficient probiotic viability, even after 14 days of storage at 4 °C. This result was attributed to system composition and structure. During the gastric phase, the presence of caseins and MG-AMF mixed structures induced the formation of clots, entrapping and protecting cells against the acidic pH of the stomach, as confirmed by confocal micrographs and particle size. During the intestinal phase, cell viability was guaranteed by the formation of mixed micelles promoted by MG. It was demonstrated that microbial cells located near MG structures where they found protection.  相似文献   
3.
The present study reports for the first time the performance of silver phosphate (Ag3PO4) microcrystals as photocatalyst (degradation of Rodamine B-RhB) and antifungal agent (against Candida albicansC. albicans) under visible-light irradiation (455 nm). Ag3PO4 microcrystals were synthesized by a simple co-precipitation (CP) method at room temperature. The structural and electronic properties of the as-synthetized Ag3PO4 have been investigated before and after 4 cycles of RhB degradation under visible light using X-ray diffraction (XRD), micro-Raman spectroscopy, UV–Vis spectrophotometer and field emission scanning electron microscopy (FE-SEM) images. The antifungal activity was analyzed in planktonic cells and 48h-biofilm of C. albicans by colony forming units (CFU) counting, confocal laser and FE-SE microscopies. Statistical analysis was carried out using SPSS software. Morphological and structural modifications of Ag3PO4 were observed upon recycling. After 4 recycles, the material maintained its photodegradation property; an eightfold increase in the efficiency of Ag3PO4 was observed in planktonic cells and a two fold increase in biofilm when irradiated under visible light. Thus, higher antifungal effectiveness against C. albicans was obtained when associated with visible-light irradiation.  相似文献   
4.
Macrophages are highly heterogeneous and plastic immune cells with peculiar characteristics dependent on their origin and microenvironment. Following pathogen infection or damage, circulating monocytes can be recruited in different tissues where they differentiate into macrophages. Stimuli present in the surrounding milieu induce the polarisation of macrophages towards a pro-inflammatory or anti-inflammatory profile, mediating inflammatory or homeostatic responses, respectively. However, macrophages can also derive from embryonic hematopoietic precursors and reside in specific tissues, actively participating in the development and the homeostasis in physiological conditions. Pancreatic islet resident macrophages are present from the prenatal stages onwards and show specific surface markers and functions. They localise in close proximity to β-cells, being exquisite sensors of their secretory ability and viability. Over the years, the crucial role of macrophages in β-cell differentiation and homeostasis has been highlighted. In addition, macrophages are emerging as central players in the initiation of autoimmune insulitis in type 1 diabetes and in the low-grade chronic inflammation characteristic of obesity and type 2 diabetes pathogenesis. The present work reviews the current knowledge in the field, with a particular focus on the mechanisms of communication between β-cells and macrophages that have been described so far.  相似文献   
5.
6.
7.
8.
The aim of the study was to evaluate the physical and microstructural characteristics of crackers baked in four different industrial baking ovens (indirect radiation-cyclotherm, indirect convection, hybrid and industrial tunnel-ITO). Indirect convection and cyclotherm ovens provide the highest (5685.43 ± 51 W m−2) and the lowest (4860 ± 38.87 W m−2) amount of heat flux, respectively. Despite the amount of heat flux, indirect convection led to crackers with the highest moisture (7.86% vs. 4.82% in clyclotherm) and specific volume, but the lowest hardness. Cyclotherm resulted in crackers with lower specific volume, surface area, porosity, smooth and regular surface. Conversely, the hybrid and ITO ovens showed closer heat flux, leading to crackers with similar moisture content, texture parameters, specific volume, browning and inner porosity. Overall results show the potential of baking using different ovens for modifying the quality parameters of the crackers.  相似文献   
9.
This paper reports the thermal, morphological and mechanical properties of environmentally friendly poly(3-hydroxybutyrate) (PHB)/poly(butylene succinate) (PBS) and PHB/poly[(butylene succinate)-co-(butylene adipate)] (PBSA) blends, prepared by melt mixing. The blends are known to be immiscible, as also confirmed by the thermodynamic analysis here presented. A detailed quantification of the crystalline and amorphous fractions was performed, in order to interpret the mechanical properties of the blends. As expected, the ductility increased with increasing PBS or PBSA amount, but in parallel the decrease in the elastic modulus appeared limited. Surprisingly, the elastic modulus was found properly described by the rule of mixtures in the whole composition range, thus attesting mechanical compatibility between the two blend components. This unusual behavior has been explained as due to co-continuous morphology, present in a wide composition range, but also at the same time as the result of shrinkage occurring during sequential crystallization of the two components, which can lead to physical adhesion between matrix and dispersed phase. For the first time, the elastic moduli of the crystalline and mobile amorphous fractions of PBS and PBSA and of the mobile amorphous fraction of PHB at ambient temperature have been estimated through a mechanical modelling approach. © 2021 The Authors. Polymer International published by John Wiley & Sons Ltd on behalf of Society of Industrial Chemistry.  相似文献   
10.
Due to its excellent bone-like mechanical properties and non-toxicity, magnesium (Mg) and its alloys have attracted great interest as biomaterials for orthopaedic applications. However, their fast degradation rate in physiological environments leads to an acute inflammatory response, restricting their use as biodegradable metallic implants. Endowing Mg-based biomaterials with immunomodulatory properties can help trigger a desired immune response capable of supporting a favorable healing process. In this study, electrospun poly(ε-caprolactone) (PCL) fibers loaded with coumarin (CM) and/or zinc oxide nanoparticles (ZnO) were used to coat the commercial AZ31 Mg alloy as single and combined formulas, and their effects on the macrophage inflammatory response and osteoclastogenic process were investigated by indirect contact studies. Likewise, the capacity of the analyzed samples to generate reactive oxygen species (ROS) has been investigated. The data obtained by attenuated total reflection Fourier-transform infrared (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS) analyses indicate that AZ31 alloy was perfectly coated with the PCL fibers loaded with CM and ZnO, which had an important influence on tuning the release of the active ingredient. Furthermore, in terms of degradation in phosphate-buffered saline (PBS) solution, the PCL-ZnO- and secondary PCL-CM-ZnO-coated samples exhibited the best corrosion behaviour. The in vitro results showed the PCL-CM-ZnO and, to a lower extent, PCL-ZnO coated sample exhibited the best behaviour in terms of inflammatory response and receptor activator of nuclear factor kappa-B ligand (RANKL)-mediated differentiation of RAW 264.7 macrophages into osteoclasts. Altogether, the results obtained suggest that the coating of Mg alloys with fibrous PCL containing CM and/or ZnO can constitute a feasible strategy for biomedical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号