首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   3篇
化学工业   37篇
金属工艺   1篇
能源动力   14篇
轻工业   40篇
无线电   1篇
一般工业技术   8篇
自动化技术   6篇
  2021年   4篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   7篇
  2013年   8篇
  2012年   16篇
  2011年   23篇
  2010年   8篇
  2009年   10篇
  2008年   5篇
  2007年   2篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1995年   1篇
排序方式: 共有107条查询结果,搜索用时 290 毫秒
1.
Composite materials have been known for its low density, ease in fabrication, high structural rigidity, and wide range applications, i.e. aeronautic applications and automotive industry. Due to this, extensive studies had been conducted to evaluate its axial crushing ability to replace metallic materials. In this paper, it reviewed the usage of fibre reinforced plastic composite (FRP) as an energy absorption application device. Failure modes and geometrical designs such as shapes, geometry and triggering effect have been studied where these factors affected on peak load and specific energy absorption significantly. Accordingly, numerical analysis for axial crushing of affected factors had been simulated to predict the failure mechanisms of FRP composites.  相似文献   
2.
Hydrogen becomes one of the most clean energy sources. The major issues on hydrogen are lack of practical clean and high‐temperature processes and possible practical storage of clean hydrogen. An energy intensive of clean hydrogen storage via chemical and liquid fuel production route is the current demand. This article reviewed the most recent research for hydrogen (H2) production by using several methods, such as thermochemical process, thermal decomposition, biological approaches, electrolysis, and photocatalytic method. H2 storage types, including physical and chemical approaches, were also reviewed. The produced H2 was stored as valuable chemicals and fuels via CO2 hydrogenation reaction. Reactor designs are the illustrated number of design ranging from the fixed bed to the continuous stirred tank reactor. Catalyst type, catalytic system, and the related mechanism of CO2 hydrogenation reaction to form alcohol, alkanes, and carboxylic acid were also discussed in detail.  相似文献   
3.
The purpose of this study was to optimize the production parameters for water-soluble phytosterol nanodispersions. Response surface methodology (RSM) was employed to model and optimize three of the processing parameters: mixing time (t) by conventional homogenizer (1–20 min), mixing speed (v) by conventional homogenizer (1,000–9,000 rpm) and homogenization pressure (P) by high-pressure homogenizer (0.1–80 MPa). All responses [i.e., mean particle size (PS), polydispersity index (PDI) and phytosterols concentration (Phyto, mg/l)] fitted well to a reduced quadratic model by multiple regressions after manual elimination. For PS, PDI and Phyto, the coefficients of determination (R 2) were 0.9902, 0.9065 and 0.8878, respectively. The optimized processing parameters were 15.25 min mixing time, 7,000 rpm mixing speed and homogenization pressure 42.4 MPa. In the produced nanodispersions, the corresponding responses for the optimized preparation conditions were a PS of 52 nm, PDI of 0.3390 and a Phyto of 336 mg/l.  相似文献   
4.
Rapid Fourier transform infrared (FTIR) spectroscopy combined with attenuated total reflectance (ATR) was applied for quantitative analysis of virgin coconut oil (VCO) in binary mixtures with olive oil (OO) and palm oil (PO). The spectral bands correlated with VCO, OO, PO; blends of VCO and OO; VCO and PO were scanned, interpreted, and identified. Two multivariate calibration methods, partial least square (PLS) and principal component regression (PCR), were used to construct the calibration models that correlate between actual and FTIR-predicted values of VCO contents in the mixtures at the FTIR spectral frequencies of 1,120–1,105 and 965–960 cm−1. The calibration models obtained were cross validated using the “leave one out” method. PLS at these frequencies showed the best calibration model, in terms of the highest coefficient of determination (R 2) and the lowest of root mean standard error of calibration (RMSEC) with R 2 = 0.9992 and RMSEC = 0.756, respectively, for VCO in mixture with OO. Meanwhile, the R 2 and RMSEC values obtained for VCO in mixture with PO were 0.9996 and 0.494, respectively. In general, FTIR spectroscopy serves as a suitable technique for determination of VCO in mixture with the other oils.  相似文献   
5.
6.
The Dominican Republic is a tobacco-growing country, and tobacco control efforts there have been virtually nonexistent. This study provides a first systematic surveillance of tobacco use in six economically disadvantaged Dominican Republic communities (two small urban, two peri-urban, two rural; half were tobacco growing). Approximately 175 households were randomly selected in each community (total N = 1,048), and an adult household member reported on household demographics and resources (e.g., electricity), tobacco use and health conditions of household members, and household policies on tobacco use. Poverty and unemployment were high in all communities, and significant gaps in access to basic resources such as electricity, running water, telephones/cell phones, and secondary education were present. Exposure to tobacco smoke was high, with 38.4% of households reporting at least one tobacco user, and 75.5% allowing smoking in the home. Overall, 22.5% reported using tobacco, with commercial cigarettes (58.0%) or self-rolled cigarettes (20.1%) the most commonly used types. Considerable variability in prevalence and type of use was found across communities. Overall, tobacco use was higher in males, illiterate groups, those aged 45 or older, rural dwellers, and tobacco-growing communities. Based on reported health conditions, tobacco attributable risks, and World Health Organization mortality data, it is estimated that at least 2,254 lives could potentially be saved each year in the Dominican Republic with tobacco cessation. Although it is expected that the reported prevalence of tobacco use and health conditions represent underestimates, these figures provide a starting point for understanding tobacco use and its prevalence in the Dominican Republic.  相似文献   
7.
BACKGROUND: Squalene was concentrated from palm fatty acid distillate (PFAD) in this study using commercial immobilised Candida antarctica lipase (Novozyme 435®). The PFAD was neutralised (NPFAD) using an alkali to liberate the free fatty acids and then hydrolysed at 65 ± 1 °C. The enzymatic hydrolysis on NPFAD was optimised using response surface methodology (RSM) before being neutralised again to obtain a concentrated squalene fraction. RESULTS: A five‐level, three‐factor central composite rotatable design was adopted to evaluate the effects of the enzymatic hydrolysis parameters reaction time (4–12 h), water content (50–70% w/w) and enzyme concentration (1.5–3.5% w/w) on the percentage yield of squalene concentration. The optimal reaction parameters for maximum yield of squalene concentration were identified from the respective contour plots. The optimal enzymatic hydrolysis conditions were a reaction time of 7.05 h, a water content of 61.40% w/w and an enzyme concentration of 2.23% w/w. CONCLUSION: RSM was used to determine the optimal conditions for enzymatic hydrolysis of NPFAD with C. antarctica lipase for maximum recovery of squalene which could be implemented on an industrial scale. Copyright © 2008 Society of Chemical Industry  相似文献   
8.
The aim of this study was to investigate the feasibility of Fourier-transform infrared (FTIR) spectroscopy combined with multivariate calibrations of partial least square (PLS) and principle component regression (PCR) for analysis of virgin coconut oil (VCO) in the ternary mixture with palm oil (PO) and olive oil, and for analysis of extra virgin olive oil (EVOO) mixed with soybean oil (SO) and corn oil (CO). The spectra of individual oils and their blends with certain concentrations were scanned using horizontal attenuated total reflectance accessory at mid-infrared region of 4,000–650 cm−1. The optimal frequency regions selected for calibration models were based on its ability to give the highest values of coefficient of determination (R 2) and the lowest values of root mean standard error of calibration (RMSEC). PLS was slightly better for quantitative analysis of VCO and EVOO compared with PCR. VCO in ternary mixtures is successfully determined at frequency region of 1,200–1,000 using second derivative FTIR spectra with R 2 and RMSEC values of 0.999 and 0.200, respectively. Meanwhile, EVOO is best determined at 1,200–1,000 using first derivative FTIR spectra with R 2 and RMSEC values of 0.999 and 0.975, respectively. The results showed that FTIR spectroscopy offers accurate and reliable technique for quantitative analysis of VCO and EVOO in ternary systems. In addition, the developed method can be used for the monitoring of VCO and EVOO adulteration with cheaper oils like PO in VCO as well as SO and CO in EVOO.  相似文献   
9.
The purpose of this study was to prepare and characterise water-soluble phytosterol nanodispersions for food formulation. The effects of several factors were examined: four different types of organic phases (hexane, isopropyl alcohol, ethanol and acetone), the organic to aqueous phase ratio and conventional homogenisation vs. high-pressure homogenisation. We demonstrated the feasibility of phytosterol nanodispersions production using an emulsification–evaporation technique. The results showed that hexane was able to produce the smallest particle size at a mean diameter of approximately 50 nm at monomodal distribution. Phytosterol nanodispersions prepared with a higher homogenisation pressure and a higher organic to aqueous phase ratio resulted in significantly larger phytosterol nanoparticles (P < 0.05). Phytosterol loss after high-pressure homogenisation ranged from 3% to 28%, and losses increased with increasing homogenisation pressure. Elimination of the organic phase by evaporation resulted in a phytosterol loss of 0.5–9%.  相似文献   
10.
In the present work, titania-coated (TiO2) boron nitride nanofibers were produced by the electrospinning method, and the effect of heat treatment on the nanofibers was studied. Electrospinning method is often adopted for the synthesis of one-dimensional nanofibers due to high productivity, simplicity, and cost-effectiveness. In this study, boric oxide was deposited on co-electrospun polyacrylonitrile and TiO2. TiO2-coated boron nitride nanofibers, with a diameter of 100 nm, were obtained after heat treatment and nitridation. The effects of heat treatment on the morphology, surface area and hydrogen storage capacity were studied extensively. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) showed long, bead-free nanofibers and the presence of TiO2 nanoparticles on the nanofibers. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy depicted hexagonal structures of boron nitride. The hydrogen uptake capacities of the nanofibers were investigated by pressure composition isotherm (PCI) in the pressure range of 1–70 bar at room temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号