首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
轻工业   4篇
  2012年   2篇
  2011年   2篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
以柠檬酸三钠-三氯化铁法合成水溶性大豆多糖-铁(Ⅲ)配合物,采用邻菲罗啉分光光度法测得其含铁量为18.1%,表明Fe3+与水溶性大豆多糖基本形成了稳定的配合物,在pH值1~14内不沉淀。对其抗氧化活性的研究表明,水溶性大豆多糖与铁配合后,对羟基自由基、亚硝酸盐的清除活性及对脂质抗氧化的活性均比水溶性大豆多糖好。在浓度为10 mg/mL时,水溶性大豆多糖对羟基自由基的清除率为16.0%,对亚硝酸盐的清除率为53.9%,对脂质体氧化的抑制率为34.9%,而相同条件下水溶性大豆多糖-铁(Ⅲ)配合物对羟基自由基的清除率为29.6%,对亚硝酸盐的清除率为67.5%,对脂质体氧化的抑制率为77.9%。  相似文献   
2.
优化水溶性大豆多糖-铁(Ⅱ)配合物的合成工艺,在单因素试验基础上,应用响应面法二次回归正交旋转组合试验设计,分析水溶性大豆多糖与催化剂柠檬酸三钠的质量比、pH值、反应时间及温度对配合物铁含量的影响,建立相应的预测模型。方差分析结果表明:质量比、pH值对铁含量有显著影响。优化所得的较优工艺参数为水溶性大豆多糖与柠檬酸三钠质量比1.89:1、pH3.89、反应时间1.56h、温度60.6℃。对应的铁含量的预测值为23.08%,实际平均值为21.89%。结果表明:应用响应面法所得到的水溶性大豆多糖-铁(Ⅱ)配合物的合成工艺参数是可行的。  相似文献   
3.
采用六偏磷酸钠、氢氧化钠和酒石酸浸提豆渣得大豆多糖SSPSP1、SSPSP2和SSPSP3,考察了阳离子种类及浓度对三种大豆多糖在高岭土悬浮液中絮凝性的影响。结果表明:不同阳离子价态对三种大豆多糖促凝性不同,三价阳离子优于二价阳离子,一价阳离子不具促凝性。采用Fe3+激活大豆多糖絮凝性时,三种大豆多糖的最适Fe3+浓度均为0.040mmol/L,絮凝活性顺序为SSPSP2>SSPSP3>SSPSP1。采用Al3+激活大豆多糖絮凝活性时,SSPSP1、SSPSP2、SSPSP3所需的最适Al3+浓度分别为0.025、0.040、0.040mmol/L,絮凝活性顺序为SSPSP2>SSPSP1>SSPSP3。本研究发现,在Fe3+浓度为0.040mmol/L时,采用SSPSP2对高岭土悬浮液进行絮凝,效果最好。  相似文献   
4.
水溶性大豆多糖-铁(Ⅲ)配合物的制备及其理化性质研究   总被引:1,自引:0,他引:1  
研究了水溶性大豆多糖-铁(Ⅲ)配合物的制备工艺,采用响应面法二次回归正交旋转组合方案,分析了水溶性大豆多糖与铁离子的质量比、pH和反应时间对铁离子络合量及络合率的影响。结果表明,其最佳制备工艺为:质量比1.03:1、pH4.76、反应时间5h。在此条件下,水溶性大豆多糖-铁(Ⅲ)配合物中铁离子的络合量为857.32mg/g,络合率为88.30%,配合物的得率为45.37%。水溶性大豆多糖-铁(Ⅲ)溶于水,在pH1~14范围内不沉淀、不水解。水溶性大豆多糖-铁(Ⅲ)有望开发成强化铁的食品添加剂和营养型口服补铁剂。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号