首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
综合类   3篇
化学工业   2篇
轻工业   1篇
一般工业技术   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2013年   2篇
  2008年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
沉积物微生物电化学系统(SMES)是一种在水体修复方面具有一定应用前景的技术。本实验在体积为8 L的观赏鱼养殖鱼缸中原位构建了一套SMES系统,用于水体水质改善及沉积物中污染物去除。阳极和阴极均采用石墨毡(面积0.005 m~2)。稳定运行后获得544 m V的平均电压输出和195 m W/m~2的最大功率密度。稳定运行期间观赏鱼养殖鱼缸不曾换水,水中TOC、TN和TP平均质量浓度分别为16、0.98、3.7 mg/L,可满足观赏鱼养殖水质要求,形式一个较稳定的水生态系统。经过35 d的稳定运行,底泥中总有机物(TOC)去除率达到28%,总磷(TP)去除率达到4%。本实验通过在观赏鱼养殖系统中搭建SMES,实现水质净化和稳定水生态系统的构建,避免大量换水造成的浪费,为养殖水体原位修复和节约水资源提供思路。  相似文献   
2.
BDD电极电催化降解苯酚废水的研究   总被引:2,自引:0,他引:2  
采用直流等离子体化学气相沉积方法制备了硼掺杂金刚石(BDD)薄膜电极。以苯酚为目标污染物,研究了苯酚废水在电极上的电化学降解规律及降解历程。结果表明,不同浓度的苯酚在电极上均能够完全矿化成CO2。高浓度条件下,苯酚先转化成中间产物,然后中间产物再氧化成CO2;低浓度条件下,苯酚氧化反应迅速,直接矿化成CO2。提高电流密度能够加速苯酚的降解,但会导致电流效率下降。苯酚的降解历程为对位首先受到·OH自由基的攻击,生成对苯二酚,再开环形成顺、反丁烯二酸与乙酸,然后顺、反丁烯二酸在阴极还原为丁二酸,丁二酸氧化脱羧形成丙二酸、乙酸、草酸或甲酸,最终氧化成CO2。  相似文献   
3.
利用木质纤维素类生物质生产燃料酒精   总被引:1,自引:1,他引:0  
对木质纤维素类物质生产燃料酒精的技术原理,发展状况,存在的问题及前景进行了全面总结,从原料预处理、C5的转化、浓醪发酵、木质素利用等几个方面,对燃料酒精的制备技术、研究现状与最新进展进行了综述,并结合自己的研究工作,提出了生物质综合利用及燃料酒精发展的战略。  相似文献   
4.
硼掺杂金刚石薄膜电极降解青霉素G钠废水机制   总被引:2,自引:1,他引:1  
针对抗生素废水中青霉素类物质难于生化降解的问题,采用直流等离子体化学气相沉积方法制备硼掺杂金刚石(boron-doped diamond, BDD)薄膜电极,以典型的青霉素G钠为目标污染物,对BDD电极降解青霉素的规律及降解历程进行研究.结果表明,不同质量浓度的青霉素G钠在电极上均能够被完全降解,发生电化学燃烧.青霉素G钠和化学需氧量(chemical oxygen demand, COD)的降解符合一级反应动力学,电流密度从10 mA/cm2提高到20 mA/cm2时,青霉素G钠和COD的反应速率常数分别增加了51.3%和29.1%.BDD电极上青霉素G钠的降解主要受液相传质过程控制,电流效率(current efficiency, EC)与青霉素G钠的质量浓度和电流密度有关.得到了青霉素G钠在BDD电极上的降解历程,主要的中间产物有青霉酸、异构青霉酸、青霉烯酸和青霉噻唑酸.  相似文献   
5.
针对水环境中环境激素双酚A (bisphenol A, BPA)的污染,采用直流等离子体化学气相沉积方法制备了硼掺杂金刚石(boron-doped diamond,BDD)薄膜电极,利用高效液相色谱法和液相色谱质谱联用的方法,对BPA在BDD电极上的降解规律及降解历程进行研究.结果表明:不同初始质量浓度的BPA在电极上均能被完全降解,降解规律符合准一级反应动力学,初始质量浓度100和10 mg·L-1时的表观反应速率常数分别为0.494和0.700 h-1;电流密度从10 mA·cm-2提高到40 mA·cm-2时,表观反应速率常数增大50.61%,去除率提高11.26 %.BPA的降解过程检测到7种中间产物,降解主要分为两个途径:一是BPA的一侧苯环先开环降解,最后完全矿化;二是BPA的两个苯环同时开环,然后逐级降解直至矿化.  相似文献   
6.
采用水热合成法制备了SBA-15和SBA-16两种介孔SiO2载体材料,利用浸渍法将盐酸小檗碱(BBH)原料药负载于载体上,制备了载药BBH/SBA-15和BBH/SBA-16。通过多种表征方法对载药后材料的晶体结构、孔道结构等进行了测试,并研究了材料的载药、释药规律。结果表明,SBA-15和SBA-16的载药量分别为13.50%和3.45%。与BBH原料药相比,两种介孔SiO2载体均能够延长药物的释放,具有缓释效果。但SBA-15的孔径(5.77nm)较大,释药存在突释现象;而SBA-16的孔径(3.95nm)较小,能够缓慢释放药物。  相似文献   
7.
微生物电化学系统在面向实际废水处理时,表现出产电性能下降、出水水质差等缺点.为了提高其处理中高浓度、含发酵类底物废水的性能,将连续搅拌釜式反应器与之耦合,构建一体式连续搅拌微生物电化学系统(CSMER).确定系统的最佳运行条件:以连续流方式运行,在水力停留时间为12 h,进水COD浓度为6 000 mg·L~(-1)时,系统内4个电池的最大功率密度分别达(583±9),(562±7),(533±10)和(572±6)mW·m~(-2),COD去除率为(87.1±1.1)%,甲烷产率为(1.48±0.15)L·L~(-1)·d~(-1).与对照的连续搅拌釜式反应器相比,其COD去除率及甲烷产率分别提高了61.6%及244.2%.焦磷酸测序结果表明,CSMER底端的全混流搅拌区(CMZ)以Clostridium(10.0%)、Acidaminococcus(11.7%)及Lactococcus(10.8%)等水解发酵菌群为优势细菌菌属;顶端的微生物电化学区(MEZ)以产电菌Geobacter(14.5%)占优势.CSMER中相对复杂的细菌群落结构使其同时含有丰度较高的嗜乙酸产甲烷菌科(52.2%)和嗜氢产甲烷菌科(47.1%),而底端CMZ的厌氧消化过程与顶端MEZ的产电过程之间的协同作用是实现该系统性能优于对照反应器的主要原因.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号