首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7550篇
  免费   606篇
  国内免费   11篇
电工技术   132篇
综合类   3篇
化学工业   1849篇
金属工艺   196篇
机械仪表   265篇
建筑科学   221篇
矿业工程   22篇
能源动力   320篇
轻工业   1527篇
水利工程   77篇
石油天然气   57篇
无线电   473篇
一般工业技术   1277篇
冶金工业   747篇
原子能技术   61篇
自动化技术   940篇
  2024年   25篇
  2023年   81篇
  2022年   114篇
  2021年   420篇
  2020年   270篇
  2019年   340篇
  2018年   360篇
  2017年   374篇
  2016年   330篇
  2015年   239篇
  2014年   323篇
  2013年   631篇
  2012年   504篇
  2011年   549篇
  2010年   380篇
  2009年   407篇
  2008年   358篇
  2007年   314篇
  2006年   270篇
  2005年   170篇
  2004年   161篇
  2003年   151篇
  2002年   129篇
  2001年   85篇
  2000年   88篇
  1999年   96篇
  1998年   234篇
  1997年   164篇
  1996年   123篇
  1995年   78篇
  1994年   64篇
  1993年   62篇
  1992年   31篇
  1991年   19篇
  1990年   31篇
  1989年   21篇
  1988年   29篇
  1987年   13篇
  1986年   14篇
  1985年   13篇
  1984年   7篇
  1982年   7篇
  1981年   9篇
  1980年   8篇
  1978年   6篇
  1977年   6篇
  1976年   22篇
  1975年   7篇
  1974年   7篇
  1973年   6篇
排序方式: 共有8167条查询结果,搜索用时 15 毫秒
1.
This work presents the dielectric properties of YNbO4 (YNO)–TiO2 composites in the microwave range. X-ray diffraction analysis demonstrates that the addition of TiO2 to YNO results in the formation of a Y(Nb0.5Ti0.5)2O6 phase. In the microwave range, the values of permittivity and dielectric loss did not present major changes with the increment of TiO2. Moreover, the addition of TiO2 results in an improvement in the thermal stability of YNO, with YNO63 demonstrating a resonant frequency of ?8.96 ppm.°C?1. We utilised numerical simulations to evaluate the behaviour of these materials as dielectric resonator antennae and it is found that they exhibit a reflection coefficient below ?10 dB at the resonant frequency, with a realised gain of 4.94 – 5.76 dBi, a bandwidth of 665–1050 MHz and a radiation efficiency above 84%. Our results indicate that YNO–TiO2 composites are interesting candidates for microwave operating devices.  相似文献   
2.
Studies related to biomaterials that stimulate the repair of living tissue have increased considerably, improving the quality of many people's lives that require surgery due to traumatic accidents, bone diseases, bone defects, and reconstructions. Among these biomaterials, bioceramics and bioactive glasses (BGs) have proved to be suitable for coating materials, cement, scaffolds, and nanoparticles, once they present good biocompatibility and degradability, able to generate osteoconduction on the surrounding tissue. However, the role of biomaterials in hard tissue engineering is not restricted to a structural replacement or for guiding tissue regeneration. Nowadays, it is expected that biomaterials develop a multifunctional role when implanted, orchestrating the process of tissue regeneration and providing to the body the capacity to heal itself. In this way, the incorporation of specific metal ions in bioceramics and BGs structure, including magnesium, silver, strontium, lithium, copper, iron, zinc, cobalt, and manganese are currently receiving enhanced interest as biomaterials for biomedical applications. When an ion is incorporated into the bioceramic structure, a new category of material is created, which has several unique properties that overcome the disadvantages of primitive material and favors its use in different biomedical applications. The doping can enhance handling properties, angiogenic and osteogenic performance, and antimicrobial activity. Therefore, this review aims to summarize the effect of selected metal ion dopants into bioceramics and silicate-based BGs in bone tissue engineering. Furthermore, new applications for doped bioceramics and BGs are highlighted, including cancer treatment and drug delivery.  相似文献   
3.
Phosphate ester was investigated as a corrosion inhibitor for AISI 1018 carbon steel in carbon dioxide-saturated chloride solutions at different temperatures and pressures. The corrosion tests were realized by electrochemical techniques, weight loss measurements, bubble tests, and a high-pressure/high-temperature autoclave system. The corrosion tests demonstrated that the investigated molecule is an excellent corrosion inhibitor. The inhibiting effect is even bigger at high pressure and temperature than at atmospheric pressure and room temperature. The thermodynamic parameters were calculated and determined to obey the Langmuir isotherm. Polarization studies revealed that the evaluated inhibitor is a mixed type.  相似文献   
4.
Prostaglandin E2 (PGE2) is known to increase glioblastoma (GBM) cell proliferation and migration while cyclooxygenase (COX) inhibition decreases proliferation and migration. The present study investigated the effects of COX inhibitors and PGE2 receptor antagonists on GBM cell biology. Cells were grown with inhibitors and dose response, viable cell counting, flow cytometry, cell migration, gene expression, Western blotting, and gelatin zymography studies were performed. The stimulatory effects of PGE2 and the inhibitory effects of ibuprofen (IBP) were confirmed in GBM cells. The EP2 and EP4 receptors were identified as important mediators of the actions of PGE2 in GBM cells. The concomitant inhibition of EP2 and EP4 caused a significant decrease in cell migration which was not reverted by exogenous PGE2. In T98G cells exogenous PGE2 increased latent MMP2 gelatinolytic activity. The inhibition of COX1 or COX2 caused significant alterations in MMP2 expression and gelatinolytic activity in GBM cells. These findings provide further evidence for the importance of PGE2 signalling through the EP2 and the EP4 receptor in the control of GBM cell biology. They also support the hypothesis that a relationship exists between COX1 and MMP2 in GBM cells which merits further investigation as a novel therapeutic target for drug development.  相似文献   
5.
The objective of this study was to evaluate the influence of pH on rheological and viscoelastic properties of solutions based on blends of type A (GeA) or type B (GeB) gelatin and chitosan (CH). Solutions of GeA, GeB, CH, GeA:CH, and GeB:CH were prepared in several pH (3.5–6.0) and analyzed for determination of zeta-potential. Rheological analyses (stationary and dynamic essays) were carried out with blends allowing to study the effect of pH on shear stress, apparent viscosity, loss (G”) and storage (G’) moduli, and angle phase (Tanδ). Zeta potential of all biopolymers decreased linearly as a function of pH. CH presented higher values, and GeB, the lowest one, being the only having negative values at pH > 5. Overall, the pH influenced the rheological and viscoelastic properties of the colloidal solutions: shear stress and apparent viscosity increased as a function of pH. Other assays were carried out at 3% and 5% strain, for GeA:CH and GeB:CH, respectively. In the sol domain, G’ and G” (1 Hz) increased linearly for GeA:CH. But for GeB:CH, they increased in two linear different regions: one function between pH 3.5 and 5.0 and another one between 5.0 and 6.0, being a more important effect was visible in this last domain probably due to the negative net charge of gelatin, above it pI. An effect in two domains was also visible for Tanδ, explained in the same manner as previously. The GeB:CH blends behaved like diluted solutions, and transition temperatures increased as a function of pH.  相似文献   
6.

Hydrological data provide valuable information for the decision-making process in water resources management, where long and complete time series are always desired. However, it is common to deal with missing data when working on streamflow time series. Rainfall-streamflow modeling is an alternative to overcome such a difficulty. In this paper, self-organizing maps (SOM) were developed to simulate monthly inflows to a reservoir based on satellite-estimated gridded precipitation time series. Three different calibration datasets from Três Marias Reservoir, composed of inflows (targets) and 91 TRMM-estimated rainfall data (inputs), from 1998 to 2019, were used. The results showed that the inflow data homogeneity pattern influenced the rainfall-streamflow modeling. The models generally showed superior performance during the calibration phase, whereas the outcomes varied depending on the data homogeneity pattern and the chosen SOM structure in the testing phase. Regardless of the input data homogeneity, the SOM networks showed excellent results for the rainfall-runoff modeling, presenting Nash–Sutcliffe coefficients greater than 0.90.

Graphical Abstract
  相似文献   
7.
The objective of this study was to investigate chemical, technological, and sensory quality of tef in products made exclusively with tef flour and tef flour associated with other flours. The selection of the studies and the extraction of information were carried out through research in several databases. Tef flour was used in cakes, cookies, breads, cupcakes, muffins, and extruded snacks. Bread was the most evaluated product with tef flour associated with other flours or exclusively. Most of the outcomes were with tef (5–50%) associated with other flours. Increased levels of fibers, minerals, antioxidant capacity, and flavonoids were noted according to the percentage of tef. Technological characteristics demonstrated that these products showed intermediate final quality, due to the characteristics of volume, specific volume, firmness, and luminosity. Regarding sensory quality, studies that used (5–35%) tef flour associated with other flours were well-accepted.  相似文献   
8.
9.

Both water balance (WB) and rating curve (RC) are methods for estimating streamflow. The first is mostly used to estimate reservoir outflows, while the second is usually adopted in hydrometeorological network streamflow gauges. While WB uses hourly collected data, the RC estimates streamflow using current water level and extrapolation techniques. The objective of this study was to analyze variations in the reservoir’s hourly outflow at Queimado Hydroelectric Power Plant (HPP Queimado) and to propose a method to evaluate whether the estimate of the daily outflows, obtained by the WB method, is similar to the flow values obtained at a conventional station. The logistic regression (LR) model was used because it is a method that adopts binary, categorically dependent variables to identify the event of interest. The results showed that the values of streamflow, obtained from an average of two daily readings, were a good representation of the flows in the region. The LR was able to identify atypical data, especially in the rainy season. This means that data consistency analysis can be faster and safer, when adequately employed and considering the proposed conditions, contributing to both management policies and the management of water resources.

  相似文献   
10.
In this work, Gd2Ge2O7 polymorphs were obtained by solid-state reactions at 1100–1300 °C. Structural and vibrational features were investigated by X-ray diffraction and Raman spectroscopy. For the triclinic (space group P1) polymorph, all the predicted phonons were discerned in perfect agreement with the group theory calculations, while for the tetragonal polymorph (space group P41212), 53 bands of the 81 predicted modes could be identified and characterized. The Gd3+ 4f-4f electronic transitions were investigated by diffuse reflectance spectroscopy in the range 200–340 nm. By applying the Kubelka-Munk function, it was possible to determine the bandgap values for all ceramics studied. The tetragonal polymorph exhibited higher bandgap values (5.88 eV) than the triclinic one (5.59 eV), which are both more energetic than other pyrochlore polymorphs reported in the literature. The results indicate that the presence of polymorphism in Gd2Ge2O7 ceramics can be used to produce tailor-made materials since their crystal structures have a strong influence on their optical properties. Consequently, these properties could be used to tuning the optical properties of Gd-containing materials to sensitize and transfer energy to other luminescent lanthanide ions, aiming for innovative applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号