首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18275篇
  免费   647篇
  国内免费   34篇
电工技术   218篇
综合类   5篇
化学工业   2729篇
金属工艺   472篇
机械仪表   512篇
建筑科学   646篇
矿业工程   67篇
能源动力   389篇
轻工业   1703篇
水利工程   118篇
石油天然气   43篇
无线电   1892篇
一般工业技术   3047篇
冶金工业   4933篇
原子能技术   186篇
自动化技术   1996篇
  2021年   259篇
  2020年   213篇
  2019年   238篇
  2018年   334篇
  2017年   298篇
  2016年   316篇
  2015年   260篇
  2014年   425篇
  2013年   848篇
  2012年   574篇
  2011年   696篇
  2010年   549篇
  2009年   539篇
  2008年   641篇
  2007年   585篇
  2006年   524篇
  2005年   479篇
  2004年   388篇
  2003年   419篇
  2002年   360篇
  2001年   360篇
  2000年   328篇
  1999年   394篇
  1998年   1342篇
  1997年   847篇
  1996年   611篇
  1995年   431篇
  1994年   390篇
  1993年   393篇
  1992年   278篇
  1991年   247篇
  1990年   260篇
  1989年   220篇
  1988年   225篇
  1987年   210篇
  1986年   194篇
  1985年   258篇
  1984年   216篇
  1983年   210篇
  1982年   202篇
  1981年   181篇
  1980年   195篇
  1979年   133篇
  1978年   135篇
  1977年   242篇
  1976年   320篇
  1975年   136篇
  1974年   127篇
  1973年   110篇
  1970年   84篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
The esophagus is a tubular-shaped muscular organ where swallowed fluids and muscular contractions constitute a highly dynamic environment. The turbulent, coordinated processes that occur through the oropharyngeal conduit can often compromise targeted administration of therapeutic drugs to a lesion, significantly reducing therapeutic efficacy. Here, magnetically guidable drug vehicles capable of strongly adhering to target sites using a bioengineered mussel adhesive protein (MAP) to achieve localized delivery of therapeutic drugs against the hydrodynamic physiological conditions are proposed. A suite of highly uniform microparticles embedded with iron oxide (IO) nanoparticles (MAP@IO MPs) is microfluidically fabricated using the genipin-mediated covalent cross-linking of bioengineered MAP. The MAP@IO MPs are successfully targeted to a specific region and prolongedly retained in the tubular-structured passageway. In particular, orally administered MAP@IO MPs are effectively captured in the esophagus in vivo in a magnetically guidable manner. Moreover, doxorubicin (DOX)-loaded MAP@IO MPs exhibit a sustainable DOX release profile, effective anticancer therapeutic activity, and excellent biocompatibility. Thus, the magnetically guidable locomotion and robust underwater adhesive properties of the proteinaceous soft microbots can provide an intelligent modular approach for targeted locoregional therapeutics delivery to a specific lesion site in dynamic fluid-associated tubular organs such as the esophagus.  相似文献   
2.
This work aimed to examine the performance of the hybrid sintering of clay ceramic in a microwave furnace, compared to the sintering process in a conventional furnace. The raw materials were subjected to X-ray fluorescence, loss on ignition (LOI), X-ray diffraction, particle size distribution, real specific mass, and thermogravimetric analyses. The red clay ceramic mass was prepared, extruded, pre-sintered in a conventional furnace at 600°C/60 min, and sintered at temperatures between 700 °C and 1100 °C. The sintering conventional (resistive oven) was carried out for 60 min with a heating rate of 10°C/min. In the microwave furnace, the sintering times were 5, 10, and 15 min, with a heating rate of 50°C/min, with a sintering chamber coated with silicon carbide (susceptor). The sintered specimens were characterized according to linear shrinkage, water absorption, apparent porosity, apparent specific mass, X-ray diffraction, Raman spectroscopy analysis, spectroscopy analysis in the ultraviolet and visible regions, microhardness, and scanning electron microscopy. The results showed that microwave sintering promoted an increase in the microhardness and apparent specific mass, and reduction in water absorption and apparent porosity values, due to greater densification in the microstructure. The best results occurred for specimens sintered at 1100°C.  相似文献   
3.
Graphene-based materials have attracted significant attention in many technological fields, but scaling up graphene-based technologies still faces substantial challenges. High-throughput top-down methods generally require hazardous, toxic, and high-boiling-point solvents. Here, an efficient and inexpensive strategy is proposed to produce graphene dispersions by liquid-phase exfoliation (LPE) through a combination of shear-mixing (SM) and tip sonication (TS) techniques, yielding highly concentrated graphene inks compatible with spray coating. The quality of graphene flakes (e.g., lateral size and thickness) and their concentration in the dispersions are compared using different spectroscopic and microscopy techniques. Several approaches (individual SM and TS, and their combination) are tested in three solvents (N-methyl-2-pyrrolidone, dimethylformamide, and cyrene). Interestingly, the combination of SM and TS in cyrene yields high-quality graphene dispersions, overcoming the environmental issues linked to the other two solvents. Starting from the cyrene dispersion, a graphene-based ink is prepared to spray-coat flexible electrodes and assemble a touch screen prototype. The electrodes feature a low sheet resistance (290 Ω □−1) and high optical transmittance (78%), which provide the prototype with a high signal-to-noise ratio (14 dB) and multi-touch functionality (up to four simultaneous touches). These results illustrate a potential pathway toward the integration of LPE-graphene in commercial flexible electronics.  相似文献   
4.
ABSTRACT

Improvised explosive may be as primitive as a fuel and oxidizer mixture; yet not all fuel-oxidizer mixtures are explosive. Predicting explosive potential from laboratory-scale tests is desirable to screen a large matrix of potential threats in varying concentrations. Herein the properties of various fuel/oxidizer mixtures were measured at small scale (2 g) with bomb calorimetry and on large scale (5 kg) with high speed photography for detonation velocity and with piezoelectric pressure probes for TNT air blast equivalence. Potassium nitrate (KN), potassium chlorate (KC), potassium permanganate (KMnO4), potassium iodate (KIO3), ammonium nitrate (AN), and ammonium perchlorate (AP) were prepared with sucrose (Su) and aluminum (Al) fuel. Results were compared to each other as well as predictions from Cheetah thermochemical code.  相似文献   
5.
As a response to the threat of climate change, many nations are increasing their use of renewable energy, including wind energy. Large wind farms often conflict with other land uses, particularly tourism, which is a growing industry worldwide. In Iceland, tourism has recently become the largest export sector, with majority of tourists travelling to the country to experience its nature. This paper examines tourists’ opinions and perceptions of wind power development in the Southern Highlands of Iceland and compares how number, size and proximity of wind turbines, and the landscape in which they are situated, influence tourists’ perceptions. The study is based on an on-site questionnaire survey conducted in 2015. The results indicate that one-third of the travellers would be less likely to visit the Southern Highlands if a proposed wind farm were built, and two-thirds think that wind turbines would decrease the area’s attractiveness.  相似文献   
6.
7.
Park  Sohyun  Song  Jinju  Kim  Seyeon  Sambandam  Balaji  Mathew  Vinod  Kim  Sungjin  Jo  Jeonggeun  Kim  Seokhun  Kim  Jaekook 《Nano Research》2019,12(4):911-917

In this study, a pseudo-layered Na super-ionic conductor of Na3V2(PO4)2F3 (NVPF)/C cathode for sodium-ion batteries is prepared successfully using a facile polyol refluxing process without any impurity phases. The X-ray diffraction and Rietveld refinement results confirm that NVPF possesses tetragonal NASICON-type lattice with a space group of P42/mnm. In this preparative method, polyol is utilized as a solvent as well as a carbon source. The presence of nanosized NVPF particles in the carbon network is confirmed by field-emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM). The existence of carbon is analyzed by Raman scattering and elemental analysis. When applied as a Na-storage material in a potential window of 2.0–4.3 V, the electrode exhibits two flat voltage plateaus at 3.7 and 4.2 V with an electrochemically active V3+/V4+ redox couple. In addition, Na3V2(PO4)2F3/C composite achieved a retention capacity of ~ 88% even after 1,500 cycles at 15 C. Moreover, at high current densities of 30 and 50 C, Na3V2(PO4)2F3/C cathode retains the specific discharge capacities of 108.4 and 105.9 mAh·g–1, respectively, revealing the structural stability of the material prepared through a facile polyol refluxing method.

  相似文献   
8.
Herein we report the screening of a small library of aurones and their isosteric counterparts, azaaurones and N-acetylazaaurones, against Mycobacterium tuberculosis. Aurones were found to be inactive at 20 μm , whereas azaaurones and N-acetylazaaurones emerged as the most potent compounds, with nine derivatives displaying MIC99 values ranging from 0.4 to 2.0 μm . In addition, several N-acetylazaaurones were found to be active against multidrug-resistant (MDR) and extensively drug-resistant (XDR) clinical M. tuberculosis isolates. The antimycobacterial mechanism of action of these compounds remains to be determined; however, a preliminary mechanistic study confirmed that they do not inhibit the mycobacterial cytochrome bc1 complex. Additionally, microsomal metabolic stability and metabolite identification studies revealed that N-acetylazaaurones are deacetylated to their azaaurone counterparts. Overall, these results demonstrate that azaaurones and their N-acetyl counterparts represent a new entry in the toolbox of chemotypes capable of inhibiting M. tuberculosis growth.  相似文献   
9.
Thermodynamic measurements on BaMoO4, BaMoO3 and BaMo3O10 are reported, that served as input for the development of a thermodynamic model of the Ba-Mo-O system using the CALPHAD methodology. The valence states of molybdenum in BaMoO4 and BaMoO3 were confirmed to be VI and IV, respectively, from X-ray Absorption Near Edge Structure Spectroscopy measurements at the Mo K-edge. The heat capacity at low temperatures of these compounds was obtained from thermal-relaxation calorimetry. Phase equilibrium data in the BaMoO4-MoO3 section were also measured, and the transition enthalpy associated with the peritectic decomposition of BaMo3O10 was determined using Differential Scanning Calorimetry. The developed thermodynamic model used the compound energy formalism for intermediate compounds, and an ionic two-sublattice model for the liquid phase. The optimized Gibbs energies were assessed with respect to the known thermodynamic and phase equilibrium data. A good agreement is generally obtained, but a number of ill-defined data were also identified.  相似文献   
10.
High-performance YBCO 123 (YBa2Cu3O7-x) bulk superconductor samples were produced using the 3D printing paste-extrusion technique. The YBCO powder obtained after sintering a pre-mixture of Y2O3, BaCO3 and CuO powders at 950 °C was used in the formulation of pastes for extrusion in a 3D freeform printer. The 3D samples printed from pastes containing the pre-mixture powders were sintered, while those produced using the YBCO powder were not. X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and Raman analysis all confirmed the YBCO phase after sintering, both in the powder and in the samples made with the pre-mixture. Scanning electron microscopy (SEM) images revealed powder grains of heterogeneous size and geometry, as well as grain aggregation, in the sintered samples. Superconducting quantum interference device (SQUID) measurements taken within a fixed magnetic range revealed that the printed pieces have a typical magnetization temperature of 92 K, reaching ?1.43 emu/g and ?1.59 emu/g respectively a zero-field-cooled magnetization (ZFC) for sintered and non-sintered printed samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号