首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
轻工业   1篇
一般工业技术   1篇
  2022年   1篇
  2019年   1篇
排序方式: 共有2条查询结果,搜索用时 31 毫秒
1
1.
Food Science and Biotechnology - A rich source of nutrients, figs have a number of clinically validated benefits. This study aimed to evaluate the in vitro simulated gastrointestinal digestion, and...  相似文献   
2.
Value‐added aromatic monomers such as benzene, toluene, and xylenes (BTX) are very important building‐block chemicals for the production of plastics, polymers, solvents, pesticides, dyes, and adhesives. Syngas‐to‐aromatics (STA) is a very promising approach for the synthesis of aromatic monomers, and is catalyzed via bifunctional catalysts in a single reactor, wherein methanol/dimethyl ether and/or olefins intermediates formed from syngas on metal components are converted into aromatic monomers exclusively on the HZSM‐5 by cascade reactions. Since an optimal Fischer–Tropsch synthesis (FTS) temperature of Fe‐based catalysts is very close to an aromatization temperature of HZSM‐5, Fe‐based catalysts have been frequently used/modified for the synthesis of aromatic monomers from hydrogenation of carbon oxides (CO and CO2). The nature of metal components and amounts of Brönsted acid sites on HZSM‐5, and their mesoporosity and intimacy, significantly alter the selectivity for aromatics by tuning BTX distibution and catalyst stability. Although many developments have been achieved regarding the STA process in recent years, no reviews have been published in this flourishing research area over the last two decades. Here, the recent advances and forthcoming challenges in the progress of syngas (CO+H2) chemistry and hydrogenation of CO2 toward the value‐added aromatic monomers through cascade reactions are highlighted.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号