首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
化学工业   6篇
轻工业   4篇
  2021年   1篇
  2018年   2篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
  2005年   1篇
  2001年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Active Packaging Applications for Food   总被引:1,自引:0,他引:1       下载免费PDF全文
The traditional role of food packaging is continuing to evolve in response to changing market needs. Current drivers such as consumer's demand for safer, “healthier,” and higher‐quality foods, ideally with a long shelf‐life; the demand for convenient and transparent packaging, and the preference for more sustainable packaging materials, have led to the development of new packaging technologies, such as active packaging (AP). As defined in the European regulation (EC) No 450/2009, AP systems are designed to “deliberately incorporate components that would release or absorb substances into or from the packaged food or the environment surrounding the food.” Active packaging materials are thereby “intended to extend the shelf‐life or to maintain or improve the condition of packaged food.” Although extensive research on AP technologies is being undertaken, many of these technologies have not yet been implemented successfully in commercial food packaging systems. Broad communication of their benefits in food product applications will facilitate the successful development and market introduction. In this review, an overview of AP technologies, such as antimicrobial, antioxidant or carbon dioxide‐releasing systems, and systems absorbing oxygen, moisture or ethylene, is provided, and, in particular, scientific publications illustrating the benefits of such technologies for specific food products are reviewed. Furthermore, the challenges in applying such AP technologies to food systems and the anticipated direction of future developments are discussed. This review will provide food and packaging scientists with a thorough understanding of the benefits of AP technologies when applied to specific foods and hence can assist in accelerating commercial adoption.  相似文献   
2.
R. Rutkaite  Y. Li  S.P. Armes 《Polymer》2008,49(7):1800-1811
Fluorescence spectroscopic techniques, and time-resolved anisotropy measurements (TRAMS) in particular, have provided valuable information regarding micelle formation in luminescently labelled pH-responsive diblock copolymers of 2-(diethylamino)ethyl methacrylate (DEA) and 2-(dimethylamino)ethyl methacrylate (DMA). A pyrenyl derivative, located at the DEA block, allowed motion of this site to be monitored via TRAMS in aqueous solution: a significant reduction in the mobility of this label was apparent at concentrations in excess of the critical micelle concentration, CMC, of the diblock copolymer. This is consistent with the labelled DEA block being located in the core of the micelles. At concentrations below the CMC, unimers were detected in solution. The micelle size estimated from TRAMS is approximately half of that determined from dynamic light scattering measurements. This suggests that the chain ends of the block copolymer are not “frozen” into position but that limited motion may occur due to fluidity within the micelle core. This is reasonable given the low Tg of the DEA block. Alternatively, a model is proposed which suggests that the interior of the micelle is a hard sphere, surrounded by flexible, fast-moving corona, which imparts little viscous drag on the core.  相似文献   
3.

Background

The primary aim of this study was to assess whether exposure during fetal life to extra vitamin D from food fortification was associated with a reduction in the risk of subsequently developing gestational diabetes mellitus (GDM). Furthermore, we examined whether the effect of the vitamin D from fortification differed by women’s season of birth.

Methods

This semi-ecological study is based on the cancellation in 1985 of the mandatory policy to fortify margarine with vitamin D in Denmark, with inclusion of entire national adjacent birth cohorts either exposed or unexposed to extra vitamin D in utero. The identification of GDM cases later in life among both exposure groups was based on the Danish national health registers. Logistic regression analyses generating odds ratios (ORs) and 95% confidence intervals (95% CIs) were performed.

Results

Women who were prenatally exposed to the extra vitamin D from fortification tended to have a lower risk of subsequently developing GDM than unexposed women (OR 0.87, 95%CI 0.74,1.02, P?=?0.08). When analyses were stratified by women’s season of birth, exposed women born in spring had a lower risk of developing GDM compared to unexposed subjects (OR 0.68, 95%CI 0.50,0.94, p?=?0.02).

Conclusion

This study suggests that prenatal exposure to extra vitamin D from mandatory fortification may lower the risk of developing gestational diabetes among spring-born women.

Trial registration

This study is part of the D-tect project, which is registered on clinicaltrials.gov: NCT03330301.
  相似文献   
4.
With the increased use of plant oils as sustainable feedstocks, industrial oilseed meal from Crambe abyssinica (crambe) and Brassica carinata (carinata) can become a potential source for oilseed meal based plastics. In this study, crambe and carinata oilseed meal plastics were produced with 10–30 % glycerol and compression molding at 100–180 °C. Size exclusion HPLC was used to relate tensile properties to changes in protein solubility and molecular weight distribution. By combining glycerol and thermal processing, increased flexibility has been observed compared to previous work on unplasticized oilseed meal. Tensile results varied from a brittle crambe based material (10 % glycerol, 130 °C), Young’s modulus 240 MPa, strain at maximum stress of 2 %, to a soft and flexible carinata based material (30 % glycerol, 100 °C), Young’s modulus 6.5 MPa, strain at maximum stress of 13 %. Strength and stiffness development with increasing molding temperature is in agreement with the protein profiles obtained. Thus, the highest mechanical parameters were obtained at the protein solubility minimum at 140 °C. Higher temperatures caused protein degradation, increasing the level of low molecular weight extractable proteins. In carinata based materials the strain at maximum stress decreased as the protein aggregation developed. Results presented indicate that both crambe and carinata oilseed meal based materials can have their properties modulated through thermal treatment and the addition of plasticizers.  相似文献   
5.
Forty organically grown spring and winter wheat genotypes were investigated for content and compositions of tocopherol and tocotrienol. The selected genotypes belonged to five different genotypic groups, i.e. landraces, old cultivars, modern cultivars, spelt wheat, and primitive wheat. The total tocochromanols content (21.9–37.3 mg/kg) wheat were in similar ranges as previously reported for conventionally grown wheat. The vitamin E activity varied among the genotypic groups and corresponded to 12–25% of the recommended daily intake. Primitive wheat was found to contain the highest percentage of tocotrienols (74%). Content of tocochromanols and vitamin E activity are known to decrease by heating. Organic wheat is more commonly consumed as whole and sprouted grain when compared to conventional wheat and might therefore be a good source of tocochromanols in health food. The large variation in tocopherols and tocotrienols in the investigated wheat genotypes indicated a great potential for the development of specific wheat genotypes with health promoting properties in future breeding programmes.  相似文献   
6.
Cross‐linked cationic starches N‐(2‐hydroxyl)propyl‐3‐trimethyl ammonium starch chloride (CQS chloride), N‐(2‐hydroxyl)propyl‐3‐trimethyl ammonium starch iodide (CQS iodide), and N‐(2‐hydroxyl)propyl‐3‐trimethyl ammonium starch iodide–iodine (CQS triiodide) with the degree of substitution (DS) according to cationic groups from 0.04 to 0.62, as well as cross‐linked starch–iodine complexes were synthesized and tested as potential antibacterial agents. Cationic starch iodine derivatives were obtained during ion exchange reaction between CQS chloride and iodide or iodide–iodine anions in aqueous solutions. CQSDS≤0.3 chloride can form several types of iodine complexes, such as the blue amylose–iodine inclusion complex and ionic CQS+I?·(I2)m complex (m ≥ 1). The antibacterial activity of modified starches–iodine samples against different pathogenic bacterial cultures and contaminated water microorganisms was evaluated. CQS chloride and CQS iodide were found to be bacteriostatic. A strong antibacterial activity was characteristic of CQS triiodides in which molecular iodine is present in both ionic and inclusion complexes. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
7.
Summary The copolymerization of 2-(9-carbazolyl)ethylmethacrylate, 3-(9-carbazolyl)propyl-2-methacrylate and 2-(9-carbazolyl)ethylacrylate with methacrylic acid has been studied obtaining the reactivity ratios of the monomers in benzene. For the estimation of molar masses and copolymer compositions esterification of the copolymers has been performed. A thermal study of the obtained copolymers related to the carbazolylalkyl(meth)acrylate content has been carried out taking into account several theories predicting the dependence of the glass transition temperature on the copolymers composition. The copolymers in which the molar fraction of methacrylic acid did not exceed ca. 65 mol % exhibit glass transition. Glass transition temperatures increase with the increase of molar fraction of methacrylic acid. Received: 7 August 2000/Revised version: 19 September 2000/Accepted: 22 December 2000  相似文献   
8.
The amount and size distribution of polymeric protein, environmentally influenced by temperature and nitrogen timing, is an important factor determining gluten strength in wheat. Differences in mature wheat might be explained by alterations in accumulation and build‐up of proteins in the developing wheat grain. One cultivar was grown to maturity in a greenhouse using two temperatures and four nitrogen regimes. Plants were harvested during grain development and protein compositions were determined. Proteins were accumulated and built up similarly independent of temperature and nitrogen regime. Temperature influenced the protein concentration significantly, for all protein types throughout the grain development period and at maturity. The time for increase in amount of polymeric proteins differed with temperature if time was measured as days after anthesis, but not if time was measured as degree‐days. Different temperature regimes did not generally result in changes in amount and size distribution of polymeric protein. The combination of lower temperature, different nitrogen regimes and one of the cultivations led to changes in the amount and size distribution of polymeric protein in mature grains. These differences were due to a change in amount of SDS‐extractable polymeric and large monomeric proteins during grain development, indicating influences on disulphide bond formation. Copyright © 2004 Society of Chemical Industry  相似文献   
9.
BACKGROUND: Background and reasons for differences in wheat grain protein accumulation and polymerization are not fully understood. This study investigated individual and interactive effects of genetic and environmental factors on wheat grain protein accumulation and amount and size distribution of polymeric proteins (ASPP). RESULTS: Individual factors, e.g. maturation time of a cultivar, nitrogen regime and temperature level, influenced grain protein accumulation and ASPP, although interaction of these factors had a greater influence. Early maturation time and long grain maturation period (GMP) in a cultivar resulted in high amounts of sodium dodecyl sulphate (SDS)‐extractable proteins (TOTE) and low percentage of SDS‐unextractable polymeric proteins in total polymeric proteins (%UPP). Cultivars with late maturation time and short GMP resulted in low TOTE and high %UPP. Late versus early nitrogen application regime resulted in low %UPP versus low TOTE and high %UPP, respectively. High versus low temperature resulted in high %UPP and low %UPP, respectively. Differences in ASPP at maturity started as changes in protein accumulation from 12 days after anthesis. CONCLUSION: Length of GMP, especially in relation to length until maturity, governs gluten strength (%UPP) and grain protein concentration (TOTE). Length of GMP is determined by cultivar, temperature during GMP and late nitrogen availability. Copyright © 2011 Society of Chemical Industry  相似文献   
10.
Mitochondrial dysfunction during ischemic stroke ultimately manifests as ATP depletion. Mitochondrial ATP synthase upon loss of mitochondrial membrane potential during ischemia rapidly hydrolyses ATP and thus contributes to ATP depletion. Increasing evidence suggests that inhibition of ATP synthase limits ATP depletion and is protective against ischemic tissue damage. Bedaquiline (BDQ) is an anti-microbial agent, approved for clinical use, that inhibits ATP synthase of Mycobacteria; however recently it has been shown to act on mitochondrial ATP synthase, inhibiting both ATP synthesis and hydrolysis in low micromolar concentrations. In this study, we investigated whether preconditioning with BDQ can alleviate ischemia/reperfusion-induced brain injury in Wistar rats after middle cerebral artery occlusion-reperfusion and whether it affects mitochondrial functions. We found that BDQ was effective in limiting necrosis and neurological dysfunction during ischemia-reperfusion. BDQ also caused inhibition of ATPase activity, mild uncoupling of respiration, and stimulated mitochondrial respiration both in healthy and ischemic mitochondria. Mitochondrial calcium retention capacity was unaffected by BDQ preconditioning. We concluded that BDQ has neuroprotective properties associated with its action on mitochondrial respiration and ATPase activity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号