首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1556篇
  免费   25篇
  国内免费   3篇
电工技术   56篇
化学工业   253篇
金属工艺   34篇
机械仪表   20篇
建筑科学   24篇
能源动力   33篇
轻工业   144篇
水利工程   3篇
石油天然气   2篇
无线电   192篇
一般工业技术   263篇
冶金工业   400篇
原子能技术   46篇
自动化技术   114篇
  2023年   5篇
  2021年   21篇
  2020年   4篇
  2019年   23篇
  2018年   27篇
  2017年   18篇
  2016年   21篇
  2015年   11篇
  2014年   26篇
  2013年   55篇
  2012年   36篇
  2011年   73篇
  2010年   39篇
  2009年   63篇
  2008年   62篇
  2007年   45篇
  2006年   37篇
  2005年   36篇
  2004年   51篇
  2003年   51篇
  2002年   47篇
  2001年   33篇
  2000年   30篇
  1999年   48篇
  1998年   158篇
  1997年   95篇
  1996年   79篇
  1995年   58篇
  1994年   39篇
  1993年   32篇
  1992年   33篇
  1991年   28篇
  1990年   21篇
  1989年   25篇
  1988年   23篇
  1987年   18篇
  1986年   18篇
  1985年   7篇
  1984年   12篇
  1983年   9篇
  1982年   7篇
  1981年   10篇
  1980年   5篇
  1979年   5篇
  1978年   6篇
  1977年   11篇
  1976年   9篇
  1975年   5篇
  1973年   3篇
  1964年   3篇
排序方式: 共有1584条查询结果,搜索用时 31 毫秒
1.
While there are various kinds of drugs for type 2 diabetes mellitus at present, in this review article, we focus on metformin which is an insulin sensitizer and is often used as a first-choice drug worldwide. Metformin mainly activates adenosine monophosphate-activated protein kinase (AMPK) in the liver which leads to suppression of fatty acid synthesis and gluconeogenesis. Metformin activates AMPK in skeletal muscle as well, which increases translocation of glucose transporter 4 to the cell membrane and thereby increases glucose uptake. Further, metformin suppresses glucagon signaling in the liver by suppressing adenylate cyclase which leads to suppression of gluconeogenesis. In addition, metformin reduces autophagy failure observed in pancreatic β-cells under diabetic conditions. Furthermore, it is known that metformin alters the gut microbiome and facilitates the transport of glucose from the circulation into excrement. It is also known that metformin reduces food intake and lowers body weight by increasing circulating levels of the peptide hormone growth/differentiation factor 15 (GDF15). Furthermore, much attention has been drawn to the fact that the frequency of various cancers is lower in subjects taking metformin. Metformin suppresses the mechanistic target of rapamycin (mTOR) by activating AMPK in pre-neoplastic cells, which leads to suppression of cell growth and an increase in apoptosis in pre-neoplastic cells. It has been shown recently that metformin consumption potentially influences the mortality in patients with type 2 diabetes mellitus and coronavirus infectious disease (COVID-19). Taken together, metformin is an old drug, but multifaceted mechanisms of action of metformin have been unraveled one after another in its long history.  相似文献   
2.
The luminescence properties of yellow-emitting Ce3+-doped Sr-containing sialon phosphor Sr(Al,Si)5(O,N)7:Ce3+ were notably improved by the Ce raw material selection. By changing the Ce raw material from oxides to nitrides or chlorides, the emission wavelength shifted to above 560 nm, which is beneficial for higher color rendering index white light-emitting diodes. This result from an increase in the covalency of the host crystal being associated with a decrease in the oxygen content. When Ce chloride was used, both the absorption and internal quantum efficiency increased, resulting in an increase in the external quantum efficiency up to 65%–72%. Inductively coupled plasma mass spectrometry, X-ray diffraction, and electron spin resonance measurements showed that the reason for the absorption increase is an increase in Ce3+ content and suppression of the generation of the second phase, and the reason for the increase in the internal quantum efficiency is a decrease in the host crystal absorption via suppression of anion vacancy generation. It was found that Ce chloride not only suppresses oxygen impurities but also acts as a flux that results in improved crystallinity.  相似文献   
3.
4.
Periodontal disease is caused by dental plaque biofilms, and the removal of these biofilms from the root surface of teeth plays a central part in its treatment. The conventional treatment for periodontal disease fails to remove periodontal infection in a subset of cases, such as those with complicated root morphology. Adjunctive antimicrobial photodynamic therapy (aPDT) has been proposed as an additional treatment for this infectious disease. Many periodontal pathogenic bacteria are susceptible to low-power lasers in the presence of dyes, such as methylene blue, toluidine blue O, malachite green, and indocyanine green. aPDT uses these light-activated photosensitizer that is incorporated selectively by bacteria and absorbs a low-power laser/light with an appropriate wavelength to induce singlet oxygen and free radicals, which are toxic to bacteria. While this technique has been evaluated by many clinical studies, some systematic reviews and meta-analyses have reported controversial results about the benefits of aPDT for periodontal treatment. In the light of these previous reports, the aim of this review is to provide comprehensive information about aPDT and help extend knowledge of advanced laser therapy.  相似文献   
5.
Plugs, i.e. droplets formed in a microchannel, may revolutionize microfluidic cell-based assays. This study describes a microdevice that handles nanolitre-scale liquid plugs for the preparation of various culture setups and subsequent cellular assays. An important feature of this mode of liquid operation is that the recirculation flow generated inside the plug promotes the rapid mixing of different solutions after plugs are merged, and it keeps cell suspensions homogeneous. Thus, serial dilutions of reagents and cell suspensions with different cell densities and cell types were rapidly performed using nanolitres of solution. Cells seeded through the plug processing grew well in the microdevice, and subsequent plug processing was used to detect the glucose consumption of cells and cellular responses to anticancer agents. The plug-based microdevice may provide a useful platform for cell-based assay systems in various fields, including fundamental cell biology and drug screening applications.  相似文献   
6.
A new mathematical method of estimating the state for uncertain continuous-time multiple-input multiple-output minimum-phase (with respect to the relation between the disturbance and the output) dynamical systems with arbitrarily relative degrees is presented. For the systems with relative degree one, the state observer which is perfectly robust to disturbances is constructed by using only the input and output information. The estimating error of the state decays to zero exponentially. For the systems with higher relative degrees, the state observer is formulated for the first time, where the input and output information, and the a priori information of the upper and lower bounds of the disturbances are employed. In this case, the estimating error of the state can be controlled to be as small as is needed by the design parameters. The attraction of the proposed observers lies in their robustness to disturbances and insensitivity to the high-frequency noises accompanying the inputs. A design example and its simulation results are presented to illustrate the proposed algorithm.  相似文献   
7.
Transformation-induced plasticity (TRIP)-aided bainitic ferrite steels developed for automotive applications have attractive mechanical properties such as ductility, formability, toughness, fatigue strength and delayed fracture strength. These mechanical properties are principally associated with a ductile lath-structure matrix and the strain-induced transformation of the metastable-retained austenite films of 3–20 vol.%. In this paper, data on the microstructural and mechanical properties of the low-carbon TRIP-aided bainitic ferrite steels are critically assessed, as well as their deformation mechanism.  相似文献   
8.
We observed crack generation and structural changes in electroless nickel–phosphorus (Ni–P) plating layers formed on copper-metalized silicon nitride substrates both during thermal cycling from ? 40 to 250 °C and during storage (not cycling) at 250 °C in order to investigate the effect of the phosphorus contents on crack generation and growth in the Ni–P platings. The used platings contained phosphorus at three different contents: 2.1 wt% [Ni–P(low)], 6.5 wt% [Ni–P(med)], and 10.9 wt% [Ni–P(high)]. The generation time and the amount of cracks were strongly dependent on their phosphorus contents. More cracks appeared after thermal cycling than after storage at 250 °C. In Ni–P(low), cracks were generated after 200 thermal cycles, whereas no cracks were observed even after 250 h of storage at 250 °C. In Ni–P(med) and Ni–P(high), both during thermal cycling and storage at 250 °C, cracks formed during or after crystallization of the amorphous layers. These results suggest that the primary factors affecting the generation of cracks in electroless Ni–P platings are crystallization of the Ni–P platings and repeated changes in thermal stress.  相似文献   
9.
10.
Magnesium (Mg) composite reinforced with carbon nanotubes (CNTs) having superior mechanical properties was fabricated using both pure Mg and AZ61 Mg alloy matrix in this study. The composites were produced via powder metallurgy route containing wet process using isopropyl alcohol (IPA) based zwitterionic surfactant solution with unbundled CNTs. The produced composites were evaluated with tensile test and Vickers hardness test and analyzed by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM) equipped with energy dispersive spectroscopy (EDS) and electron back scattered diffraction (EBSD). As a result, only with AZ61 Mg alloy matrix, tensile strength of the composite was improved. In situ formed Al2MgC2 compounds at the interface between Mg matrix and CNTs effectively reinforced the interfacial bonding and enabled tensile loading transfer from the Mg matrix to nanotubes. Furthermore, it was clarified that the microstructures and grain orientations of the composite matrix were not significantly influenced by CNT addition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号