首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   1篇
  国内免费   1篇
化学工业   10篇
金属工艺   4篇
机械仪表   5篇
建筑科学   9篇
能源动力   6篇
水利工程   1篇
石油天然气   1篇
无线电   3篇
一般工业技术   37篇
冶金工业   3篇
自动化技术   7篇
  2024年   1篇
  2023年   1篇
  2021年   3篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   3篇
  2013年   7篇
  2012年   9篇
  2011年   9篇
  2010年   16篇
  2009年   3篇
  2008年   4篇
  2007年   6篇
  2005年   1篇
  2003年   3篇
  2002年   1篇
  1998年   1篇
  1980年   1篇
  1976年   1篇
排序方式: 共有86条查询结果,搜索用时 15 毫秒
1.
The silica- and alumina-supported Co–Zn catalysts were synthesized by thermal decomposition of new inorganic precursors [Co4.32Zn1.68(HCO2)18(C2H8N)6]/SiO2 or Al2O3. A novel coordination polymer formulated as [Co4.32Zn1.68(HCO2)18(C2H8N)6] (1) was prepared using the solvothermal technique and characterized by elemental analysis, FT-infrared spectroscopy. Thermal stability of the complex 1 was investigated by thermogravimetric analysis and differential scanning calorimetry, and its structure was determined by single-crystal X-ray diffraction. Characterization of catalysts was carried out using powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and BET specific surface area. The catalysts were evaluated for Fischer–Tropsch synthesis (FTS) in the temperature range 200–300 °C. The results revealed that the synthesized catalysts have higher selectivity to the desired products at 260 °C. The performance of the catalysts was compared to those of catalysts constructed via impregnation method and the fabricated catalysts show higher activity and selectivity than the reference catalysts.  相似文献   
2.
Water Resources Management - In recent decades, due to groundwater withdrawal in the Kabodarahang region, Iran, Hamadan, hazardous events such as sinkholes, droughts, water scarcity, etc., have...  相似文献   
3.
The application of hydroforming process on aluminum-steel laminated sheets includes advantages of both process and material to improve formability of lightweight low formable aluminum sheets. In this research, analytical models were developed to investigate stress analysis and instability condition in hydro-mechanical deep drawing (HMDD) of cylindrical AL/St cups. Based on these models, several parametric study were performed regarding to the effect of thickness of layers, setting condition of layers, drawing ratio and frictional condition on key parameter of critical fluid pressure of process. The experimental works were performed on Aluminum (1050-H0)/Carbon steel (St13) two-layer sheets for verification of analytical results and the prediction of actual working pressure window. It was demonstrated that the fluid pressure window for a successful part forming could be rapidly predicted with a reasonable accuracy by the analytic model compared to lengthy and costly FEA or experimental trial and error.  相似文献   
4.
The influence of a magnetic field on the skin friction factor of steady fully-developed laminar flow through a pipe was studied experimentally. A mathematical model was introduced and a finite difference scheme used to solve the governing equations in terms of vorticity-stream function. The model predictions agree favourably with experimental results. It is observed that the pressure drop varies in proportion to the square of the product of the magnetic field and the sine of the magnetic field angle. Also, the pressure drop is proportional to the flow rate. This situation is similar to what applies in the absence of a magnetic field. It is found that a transverse magnetic field changes the axial velocity profile from the parabolic to a relatively flat shape. At first, the radial velocity rises more rapidly and then gradually decreases along the pipe until falling to zero. A numerical correlation can be written for the considerable distance required for the new axial velocity profile to establish. Owing to the changes taking place in the axial velocity profile, it exhibits a higher skin friction factor. The new axial velocity profile asymptotically approaches its limit as the Hartmann number becomes large.  相似文献   
5.
Fiber–metal laminates (FMLs) are high-performance hybrid structures based on alternating stacked arrangements of fiber-reinforced plastic (FRP) plies and metal alloy layers. The response of FMLs subjected to low-velocity impact is studied in this paper. The aluminum (Al) sheets are placed instead of some of layers of FRP plies. The effect of the Al layers on contact force history, deflection, in-plane strains and stresses of the structure is studied. The first-order shear deformation theory as well as the Fourier series method is used to solve the governing equations of the composite plate analytically. The interaction between the impactor and the plate is modeled with the use of a two degrees-of-freedom system, consisting of springs-masses. The Choi's linearized Hertzian contact model is used in the impact analysis of the hybrid composite plate. The results indicated that some of the parameters like the layer sequence, mass and velocity of the impactor in a constant impact energy level, and the aspect ratio (a/b) of the plate are important factors affecting the dynamic response of the FMLs. Interaction among the mentioned geometrical parameters and material parameters like the aluminum 2024-T3 alloy layers is studied. The numerical results that are presented in this paper hitherto not reported in the published literature.  相似文献   
6.
This paper presents a finite element model based on the first order shear deformation theory to investigate the dynamic behavior of laminated composite plates traversed by a moving oscillator. The oscillator model is assumed to be consisting of two nodal masses that are connected by means of a spring-damper unit. The governing equations of motion of two sub-systems are separately integrated by applying the Newmark’s time integration procedure. Then, the obtained equations are coupled and the responses of system components are calculated in each time step. The accuracy of algorithm is verified by comparing the numerical results of static, free vibration and simplified moving force problems analysis with the available exact solutions and other numerical results in the literature. Also, the effects of mass ratio, damping ratio of system components, stiffness of suspension system, velocity and eccentricity of moving oscillator on dynamic responses is parametrically studied. This algorithm can be applied to various boundary conditions, lamination schemes and fiber angels.  相似文献   
7.
A first known formulation for the out-of-plane free vibration analysis of functionally graded (FG) circular curved beams in thermal environment is presented. The formulation is based on the first order shear deformation theory (FSDT), which includes the effects of shear deformation and rotary inertia due to both torsional and flexural vibrations. The material properties are assumed to be temperature dependent and graded in the direction normal to the plane of the beam curvature. The equations of motion and the related boundary conditions, which include the effects of initial thermal stresses, are derived using the Hamilton’s principle. Differential quadrature method (DQM), as an efficient and accurate numerical method, is adopted to solve the thermoelastic equilibrium equations and the equations of motion. The formulations are validated by comparing the results, in the limit cases, with the available solutions in the literature for isotropic circular curved beams. In addition, for FG circular curved beams with soft simply supported edges, the results are compared with the obtained exact solutions. Then, the effects of temperature rise, boundary conditions, material and geometrical parameters on the natural frequencies are investigated.  相似文献   
8.
Dynamic response of fiber metal laminate cylindrical shells subjected to initial combined axial load and internal pressure were studied in this paper. First order shear deformation theory (FSDT) was utilized in the shell’s equilibrium equations and strain–displacement relations were based on Love’s first approximation theory. Equilibrium equations for buckling, free and forced vibration problems of the shell were solved using Galerkin method. The influences of FML parameters such as material properties lay up, Metal Volume Fraction (MVF), fiber orientation and initial stresses on dynamic response were investigated. The results were indicated that the FML lay up, has a significant effect on natural frequencies as well as transient dynamic response with respect to various values of MVF as well as pre-stress.  相似文献   
9.
Based on the three-dimensional elasticity theory, free vibration analysis of functionally graded (FG) curved thick panels under various boundary conditions is studied. Panel with two opposite edges simply supported and arbitrary boundary conditions at the other edges are considered. Two different models of material properties variations based on the power law distribution in terms of the volume fractions of the constituents and the exponential distribution of the material properties through the thickness are considered. Differential quadrature method in conjunction with the trigonometric functions is used to discretize the governing equations. With a continuous material properties variation assumption through the thickness of the curved panel, differential quadrature method is efficiently used to discretize the governing equations and to implement the related boundary conditions at the top and bottom surfaces of the curved panel and in strong form. The convergence of the method is demonstrated and to validate the results, comparisons are made with the solutions for isotropic and FG curved panels. By examining the results of thick FG curved panels for various geometrical and material parameters and subjected to different boundary conditions, the influence of these parameters and in particular, those due to functionally graded material parameters are studied.  相似文献   
10.
Circulating cell-free DNA (cfDNA) is emerging as a potential tumor biomarker. CfDNA-based biomarkers may be applicable in tumors without an available non-invasive screening method among at-risk populations. Esophageal squamous cell carcinoma (ESCC) and residents of the Asian cancer belt are examples of those malignancies and populations. Previous epidemiological studies using cfDNA have pointed to the need for high volumes of good quality plasma (i.e., >1 mL plasma with 0 or 1 cycles of freeze-thaw) rather than archival serum, which is often the main available source of cfDNA in retrospective studies. Here, we have investigated the concordance of TP53 mutations in tumor tissue and cfDNA extracted from archival serum left-over from 42 cases and 39 matched controls (age, gender, residence) in a high-risk area of Northern Iran (Golestan). Deep sequencing of TP53 coding regions was complemented with a specialized variant caller (Needlestack). Overall, 23% to 31% of mutations were concordantly detected in tumor and serum cfDNA (based on two false discovery rate thresholds). Concordance was positively correlated with high cfDNA concentration, smoking history (p-value = 0.02) and mutations with a high potential of neoantigen formation (OR; 95%CI = 1.9 (1.11–3.29)), suggesting that tumor DNA release in the bloodstream might reflect the effects of immune and inflammatory context on tumor cell turnover. We identified TP53 mutations in five controls, one of whom was subsequently diagnosed with ESCC. Overall, the results showed that cfDNA mutations can be reliably identified by deep sequencing of archival serum, with a rate of success comparable to plasma. Nonetheless, 70% non-identifiable mutations among cancer patients and 12% mutation detection in controls are the main challenges in applying cfDNA to detect tumor-related variants when blindly targeting whole coding regions of the TP53 gene in ESCC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号