首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
水利工程   12篇
  2022年   5篇
  2021年   2篇
  2019年   3篇
  2017年   2篇
排序方式: 共有12条查询结果,搜索用时 78 毫秒
1.
Water Resources Management - The water evaluation and planning (WEAP) approach and the invasive weed optimization algorithm (IWOA) are herein employed to determine the optimal operating policies in...  相似文献   
2.

The purpose of this study is to select the best modeling approach (simulation or optimization) for operation the water supply system using multi-criteria decision-making method. For this purpose, the Geophysical Fluid Dynamics Laboratory-Earth System Models (GFDL-ESM2M) and the Model for Interdisciplinary Research on Climate-ESM (MIROC-ESM) models were selected to predict the changing trend of the climatic variables of rainfall and temperature, respectively. Then Artificial Neural Network (ANN) model and a decision support system tool named Cropwat were used to simulate water resources and consumption; and to model the behavior of the water supply system, the MODified SYMyld (MODSIM) (as simulator) and the modeling language and optimizer LINGO 18 (as optimizer) were used in the future time period (2026–2039) and the results were compared with the baseline period (1987–2000) for the Idoghmush reservoir (Iran). The results of MODSIM simulation model show that the indexes of reliability, vulnerability, reseiliency and flexibility in the future time period under the RCP2.6 emission scenario compared to the baseline time period decreased by 9%, decreased by 22%, increased by 4%, and decreased by 2%, respectively. The results of the LINGO 18 optimization model show that the reliability, vulnerability, resiliency and flexibility indexes in the future time period under the RCP2.6 emission scenario compared to the baseline time period decreased by 13%, decreased by 17%, increased by 14% and increased by 3%, respectively. Due to the different results obtained from optimization and simulation approaches for the study area, the Multi-Attributive Ideal-Real Comparative Analysis (MAIRCA) multi-criteria decision-making method was used to select a more appropriate approach. The results show that for water resources management planning, the simulation approach is given priority over the optimization approach due to its characteristics.

  相似文献   
3.
Water Resources Management - Environmental Impact Assessments (EIAs) of development projects are necessary to minimize negative impacts and maximize benefits. The objective of this paper is to...  相似文献   
4.
Water Resources Management - Reservoirs are key components of water infrastructure that serve many functions (water supply, hydropower generation, flood control, recreation, ecosystem services,...  相似文献   
5.

Hydropower is a low-carbon energy source, which may be adversely impacted by climate change. This work applies the Grasshopper Optimization Algorithm (GOA) to optimize hydropower multi-reservoir systems. Performance of GOA is compared with that of particle swarm optimization (PSO). GOA is applied to hydropower, three-reservoir system (Seymareh, Sazbon, and Karkheh), located in the Karkheh basin (Iran) for baseline period 1976–2005 and two future periods (2040–2069) and (2070–2099) under greenhouse gases pathway scenarios RCP2.6, RCP4.5, and RCP8.5. GOA minimizes the shortage of hydropower energy generation. Results from GOA optimization of Seymareh reservoir show that average objective function in baseline is 85 and minimum value of average objective function in 2040–2069 would be under RCP2.6 (equal to 0.278). Optimization of Seymareh-reservoir based on PSO shows that average value of objective function in baseline is less (that is, better) than value obtained with GOA (10.953). Optimization results for two-reservoir system (Sazbon and Karkheh) based on GOA optimization show that objective function in baseline is 5.44 times corresponding value obtained with PSO, standard deviation is 2.3 times that calculated with PSO, and run-time is 1.5 times PSO’s. Concerning three-reservoir systems it was determined that objective function based on PSO had the best value (the lowest energy deficit), especially in future. GOA converges close to the best objective function, especially in future-periods optimization, and convergence to solutions is more stable than PSO’s. A comparison of performance of GOA and PSO indicates PSO converges faster to optimal solution, and produces better objective function than GOA.

  相似文献   
6.

Reservoirs are used as one of the surface water sources for different and often conflicting water supply purposes. Given the complex management policies governing a basin, it is essential to simultaneously consider different goals and cope with the associated trade-off in water resources management. This purpose requires coupling a multi-objective optimization algorithm with a reservoir simulation model, which this approach increases required computational efforts. Various simulation–optimization approaches have been developed and used for solving the related problems. However, they often have complicated methods and certain limitations in real-world applications. In this study, a new multi-objective firefly algorithm—K nearest neighbor (MOFA-KNN) hybrid algorithm is developed which is time-efficient and is not as complicated as previous approaches. The proposed algorithm was evaluated for both benchmark and real problems. The results of the benchmark problem showed that the execution time of the MOFA-KNN hybrid algorithm was up to 99.98% less than that of the multi-objective firefly algorithm (MOFA). In the real problem, the MOFA-KNN algorithm was linked to the 2D hydrodynamic and water quality model, CE-QUAL-W2, to test the developed framework for reservoir operation. The Aidoghmoush reservoir as a case study investigated to minimize the total released dissolved solids (TDS) and the water temperature difference between the inflow and the outflow. The results demonstrated that the MOFA-KNN algorithm significantly reduced the simulation–optimization execution time (>?660 times compared with MOFA). The minimum released TDS from the reservoir was 13.6 mg /l and the minimum temperature difference was 0.005 °C.

  相似文献   
7.
The purpose of this study is to evaluate Gharanghu multi-purpose reservoir system (East Azerbaijan, Iran) using efficiency indexes (EIs) affected by climate change. At first, the effects of climate change on inflow to the reservoir, as well as changes in the demand volume over a time interval of 30 years (2040–2069) are reviewed. Simulation results show that inflow to the reservoir is decreased in climate change interval compared to the baseline interval (1971–2000), so that comparison of long-term average monthly inflow to the reservoir in climate change interval is reduced about 25% compared to the baseline. Also, water demand in climate change interval will increase, namely volume of water demand for agricultural, drinking and industrial, and environmental in climate change interval is expected to increase by 20%. The simulation results of the water evaluation and planning (WEAP) model is used to determine EIs of multi-purpose reservoir system. Next, three scenarios of water supply for climate change interval are introduced to WEAP model, keeping variable of parameter related to water demand volume (based on different percentages of supply) and keeping constant of the parameter related to the volume of inflow to the reservoir. Results show that system EIs in climate change interval will have a disadvantage compared to the baseline. So that, reliability, vulnerability, resiliency and flexibility indexes in climate change interval based on 100% of water supply compared to the baseline will decrease 18%, increase 150%, decrease 33%, and decrease 47%, respectively. These indexes based on 85% of supply compared to the baseline will decrease 12%, increase 75%, decrease 30%, and decrease 39%, respectively. Also, those based on 70% of supply compared to the baseline will decrease 1%, will be without change, decrease 18%, and decrease 18%, respectively. Changes in indexes in future interval indicate the need to manage water resource development projects in the basin.  相似文献   
8.
Water Resources Management - The objective of this study is to investigate the changes in the river flow regime under the influence of dam construction and climatic variability and disaggregate...  相似文献   
9.
Water Resources Management - The complex nature of water resources and the related uncertainty cause decision making to be difficult in practice. In this study, two multi-criteria decision making...  相似文献   
10.
Water Resources Management - Confronting climate change is a daunting challenge that requires policies for climate adaptation in the field of water resources management. This paper proposes a...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号