首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   2篇
  国内免费   2篇
化学工业   2篇
能源动力   2篇
石油天然气   2篇
  2023年   1篇
  2022年   4篇
  2020年   1篇
排序方式: 共有6条查询结果,搜索用时 10 毫秒
1
1.
2.
本文以污泥水热解残渣资源化为目标,采用真空吸附法将污泥/木屑水热解的残渣吸附三水乙酸钠制备复合相变储热材料。对水热解残渣进行BET和粒径分析的表征,通过同步热分析仪、XRD及水浴中熔化-凝固多循环对复合储热材料的储热能力、相变温度、热循环稳定性等性能参数进行分析。实验结果表明,本文制备的复合相变储热材料无需添加增稠剂或悬浮剂等助剂,借助污泥残渣本身特有的均匀粒径和细微粒度特性以及木屑挥发分析出对残渣的造孔重整,作为载体可有效改善常规水合物作为储热材料的相变过冷度和相分离问题。封装尺度对储热材料的相变潜热和稳定性影响较小,100次循环后的潜热实际值与理论计算值(219.8kJ/kg)相差仅为-0.5%~0.4%,化学组分也没有变化,可见该复合储热材料既具有优良的热稳定性也具有可靠的化学稳定性。  相似文献   
3.
铁基载氧体是化学链燃烧中最受青睐的金属载氧体。构造了氧化铁载氧体的S完整表面和S1*、S2*、S3*三种代表性缺陷表面,基于密度泛函理论(Density Function Theory,DFT),首先计算分析了氧缺陷对CO在α-Fe2O3表面上吸附反应的影响,即对比了完整和缺陷α-Fe2O3(0 0 1)表面上CO的吸附和生成物CO2的解离;其次将反应后的载氧体构型表面进行O2吸附反应的模拟;继而对此载氧体一个循环及过程中铁基载氧体表面的积碳趋势进行了模拟分析。通过吸附能、反应能垒和反应能等参数的比较,得到的主要结论为,在铁基载氧体表面还原、积碳、氧化反应中,S1*类氧缺陷具有更好的反应活性和抗积碳性能,具有良好的循环反应性能。该模拟研究为缺陷类型铁基载氧体的制备及其反应条件的确定提供指导。  相似文献   
4.
以生物质热解获得的重质生物油作为研究对象,将铁氧化物负载到硅氧纤维上制备了复合铁基载氧体,以其还原态对重质生物油进行脱氧改性,反应条件为温度350 ℃、压力1.48 MPa。通过比较部分脱氧反应前后的重质生物油及载氧体组成和结构的变化,发现重质生物油组分中的氧元素被部分转移至载氧体中,重质生物油中氧元素质量分数由29.83%降低至26.12%,还原态载氧体(Fe3O4/FeO)被氧化为Fe3O4;计算得到重质生物油的有效氢/碳摩尔比由0.67增加至0.80,增加近18.44%,其热值增加至27.6 MJ/kg;组分中繁杂的有机组分大多缩合为羧酸和酚类,酮、醛类物质大幅度降低,碳氢化合物明显增多;继而添加乙醇进行催化酯化反应,则重质生物油中主要组分变为脂类和酚类,油品质有了明显改善。而复合于硅氧纤维的铁载氧体,再还原后结构稳定,可用于油品部分脱氧的多次循环。  相似文献   
5.
以煅烧后的天然锰矿石为载氧体,基于热化学分析软件(HSC Chemistry 6.0)计算,并与实验相结合,在小型鼓泡流化床上进行了宁东煤气化和燃烧特性的研究。首先将模拟计算与实验结果对比,得到宁东煤与锰矿石载氧体不同掺混比下的燃烧特性;其次,基于模拟数据和实验参数,并结合修正动力学模型,对该实验工况下燃料反应器和空气反应器(FR-AR)反应系统进行热-质平衡计算。结果表明:模拟计算煤燃烧的碳转化率和气相生成物等与实验结果一致,误差小;经1173.15 K高温煅烧的锰矿石载氧体可大幅缩短煤气化时间,并与煤合成气有良好的反应活性;FR-AR系统可以实现自热平衡。  相似文献   
6.
基于国家碳中和背景,生物质作为一种重要的可再生资源,其有效利用至关重要。生物质热解制油具有规模化潜力,成为目前生物质利用的主要方式。生物质热解技术按照液化方式不同分为直接液化和间接液化,但生物质直接液化所得生物油组分不稳定,间接液化所得生物油品质取决于反应器型式、反应温度及催化剂类型等,不同制备方法的生物油品质差别较大,生物油改性提质成为其实际应用的必要条件。归纳比较了生物质热解过程中提高生物油品质的催化剂类型,着重综述了原生物油分离为轻质组分和重质组分后分别改性提质的技术路线,可转化为燃气、燃油甚至化学品,实现生物油的高值化。针对轻质油组分的改性方法有水蒸气重整制氢、催化裂解、加氢脱氧、催化酯化等,催化剂类型以分子筛及贵金属为主;而重质油组分水含量低、黏性大,相关提质研究较少,目前报道以加氢、裂化、酯化、添加溶剂、气化为主。生物油提质改性方法中,催化剂、氢源、耗能是限制其规模化、工业化应用的主要原因,降低催化剂成本及提高催化剂寿命、减少氢源使用或利用低成本氢源、简化工艺及降低反应温度是生物油提质技术发展方向。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号