首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
无线电   7篇
  2012年   5篇
  2011年   2篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
重复频率3Hz、100mJ高光束质量钕玻璃放大器的研制   总被引:2,自引:2,他引:0  
研制了具有放大纳秒方形激光脉冲的高光束质量、高稳定的激光二极管(LD)抽运的钕玻璃激光放大器。为了获得较高的输出能量,采用LD泵浦的"串联式双程放大"高增益组件进行能量放大。为了获得高光束质量的光斑,利用液晶空间光调制器(LCSLM)对光束近场分布进行空间整形,使之产生特定的空间分布,进而对后级放大器增益不均匀性进行光学预补偿。放大器工作波长为1 053nm,工作频率为3 Hz,输入1nJ的3ns方形激光脉冲,输出激光脉冲能量为100mJ、光束口径为10mm×10mm的方光斑,能量不稳定度小于2%(均方根),净增益大于109。光束的近场调制度小于1.3∶1,远场焦斑衍射极限小于2DL,远场角漂移小于9.5μrad。  相似文献   
2.
为了获得在液晶修复技术中所需要的光束质量好、能量分布比较均匀的矩形光束,提出了一种新的光束整形系统.在这个系统中,通过对光阑后不同位置衍射效应的理论分析和计算,获得相应的衍射光斑图样,再利用4f像传递系统对理想的光斑图样进行提取和传递,经过扩束聚焦之后,用于加工样品,并设计了相应的实验装置来验证这种系统的可行性.研究结...  相似文献   
3.
利用脉冲式半导体激光器(LD)具有高峰值功率的优点,通过对抽运光和基频光的模式进行匹配,构建了一台脉冲式LD抽运腔倒空结构的主振荡器和功率放大器,并对其进行了腔外倍频实验。实验结果表明,系统实现了非常紧凑的结构,脉冲式LD抽运的方式能够提高振荡器和功率放大级的能量输出,更好地消除热畸变的影响,从振荡器可以获得脉冲宽度达3.7 ns、脉冲能量约为4 mJ的基频激光脉冲输出,经功率放大和腔外倍频后,能够得到脉宽3.4 ns、脉冲能量为3.2 mJ的绿光输出,倍频效率为40%,脉冲峰值稳定性为5%(均方根值),发散角约为0.5 mrad。  相似文献   
4.
高脉冲稳定性的100kHz皮秒再生放大器   总被引:1,自引:0,他引:1  
报道了一种具有高脉冲稳定性的100kHz皮秒脉冲再生放大装置。该放大装置采用激光二极管(LD)端面抽运的Nd:YVO4晶体作为增益介质,RTP晶体作为电光晶体。再生腔的腔型为对称W型,总长1.8m。分析了皮秒脉冲在再生放大腔中往返次数和再生腔损耗对放大脉冲倍周期分叉现象以及稳定放大时输出功率的影响。抽运功率为30W时,通过选取最优的往返次数获得了功率为5.3W的高脉冲稳定性的再生输出,脉冲稳定性均方根(RMS)值小于2%。放大后皮秒脉冲脉宽为13.78ps,脉冲峰值功率3.84MW,再生腔输出的光束质量因子M2≤1.5。  相似文献   
5.
设计了一种脉冲激光二极管抽运的低重复频率全固态腔倒空激光器,为了尽可能减小损耗的影响,在腔内采用双薄膜偏振片结构,使反射率较高的垂直方向线偏振光在腔内振荡。以此装置为基础,就泡克耳斯盒驱动电源较长的下降沿时间对全固态腔倒空激光器输出特性的影响进行了实验研究。结果表明当泡克耳斯盒驱动电源的下降沿时间远大于腔内的一次往返时间时,激光器输出特性会发生明显地变化:增大电流强度会导致脉冲宽度增大,脉冲能量经历先增大后减少的过程;增大泡克耳斯盒驱动电源的开门时间,也会导致脉冲宽度和能量发生类似的变化。  相似文献   
6.
介绍了所研发的一台放大纳秒激光脉冲的高光束质量钕玻璃激光放大器。该放大器采用了多级LD泵浦与液晶空间光调制器进行整形相结合的技术,光束传输遵循抑制衍射、主动控制与补偿及空间滤波的原则。在重频为1 Hz时,将注入的3 ns、1 nJ的方形激光脉冲能量放大到115.3 mJ,能量净增益109倍,输出激光的能量分散度小于2%,光束的近场调制度小于1.23:1,远场光斑的角漂移小于9.8μrad,远场光斑的衍射限小于2DL。  相似文献   
7.
高能量高效率钕玻璃再生放大器   总被引:4,自引:2,他引:2  
为了获得高能量、高效率的钕玻璃前置放大器,设计了一套钕玻璃再生放大系统。通过调节单程增益和优化腔模设计,使得增益介质中的小尺度自聚焦效应得到有效控制。在重复频率1Hz运行下,获得最大输出能量21mJ、脉冲宽度2.65ns的激光输出,相应的光-光转换效率为5%,总增益达108,光束质量因子M2=1.5,脉冲能量稳定性均方根(RMS)值小于2%(超过2h连续工作),光谱的中心波长为1052.92nm。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号