首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   3篇
化学工业   19篇
建筑科学   3篇
能源动力   1篇
轻工业   1篇
无线电   3篇
一般工业技术   12篇
冶金工业   1篇
自动化技术   2篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   6篇
  2011年   4篇
  2010年   4篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2002年   1篇
  1996年   1篇
  1994年   2篇
  1990年   2篇
  1988年   1篇
排序方式: 共有42条查询结果,搜索用时 187 毫秒
1.
Sodium alginate was graft-copolymerized with ethyl acrylate using ceric ammonium nitrate as an initiator. In order to optimize the conditions for grafting, the concentrations of nitric acid, initiator and monomer together with temperature, time and amount of substrate were varied. The kinetic scheme of free radical graft copolymerization has been proposed and the equations relating the values of rate of polymerization, rate of graft copolymerization and rate of homopolymerization are also suggested. The experimental results agree very well with the proposed kinetic scheme.  相似文献   
2.
The present work deals with the photopolymerization of bis-aromatic based urethane acrylate macromonomers in the presence of excess end capping agent as reactive diluent and estimation of their kinetic parameters. Formulations were made by independently homogenizing the macromonomers with photoinitiators of three different classes. Three different compositions of photoinitiators were used to study the effect of concentration of photoinitiator on cure kinetics. These compositions obtained were tested for photo curing performance using photo DSC under polychromatic radiation. The heat flows against time were recorded for all formulations under isothermal condition and the rates of polymerization, peak maximum times as well as the percentage conversions were estimated. It was observed that due to a longer timescale for reaction diffusion, formulations with macromonomer containing propoxylated backbone showed higher conversions than the corresponding ethoxylated analogue. The photopolymerization and kinetic estimations of the formulations including evaluation of kinetic model are discussed.  相似文献   
3.
4.
5.

The friction stir welded joint of wrought ZM21 alloy was divided into five parts, and their localized creep behavior was studied via the impression method. The tests were carried out in the stress range of 300–450 MPa (σimp/G ≈ 0.02–0.03) and in the temperature range of 448–523 K. Optical and SEM micrographs and EDS taken before and after the impression tests were used to study the microstructure of various zones of the FS welded joint. Power law was found to satisfactorily relate the stress and strain rates. The steady-state impression velocity was found to vary significantly between the advancing and retreating sides of TMAZ and HAZ. For TMAZ, the creep exponent on the AS was 4.8, and on the RS, it was 7.8. The activation energy on the AS was ~?133 kJ/mol, and on the RS, it was ~?101 kJ/mol. Similarly, for HAZ, the creep exponent on the AS was found to be 5.5 and on the RS, it was 4.9. The activation energy on the AS was ~?86 kJ/mol and on the RS, it was ~?232 kJ/mol. The cross-over of steady-state impression velocity of different zones indicates that the weak zone was temperature and stress dependent. Within the stresses and temperatures studied, the weld zone's creep resistance (i.e., lower minimum impression velocity) was found to be better than the base material. As it is with most magnesium alloys, dislocation climb was found to be the operative mechanism in the FS weldments of ZM21 alloy. The rate-controlling mechanism remains to be identified because the wide variation in n and Q values suggests that different creep mechanisms are in operation in different zones.

Graphical abstract
  相似文献   
6.
Anthracycline antibiotics, particularly doxorubicin (DOX) and daunorubicin, have been used extensively in the treatment of human malignancies. However, cardiotoxicity and multidrug resistance are significant problems that limit the clinical efficacy of such agents. Rational design to avoid these side effects includes strategies such as drug targeting and prodrug synthesis. The DOX prodrug N-(beta-D-glucopyranosylbenzyloxycarbonyl)-doxorubicin (prodrug 1) was synthesized for specific activation by beta-galactosidase, which is expected to release in necrotic areas of tumor lesions. Described here is the safety, pharmacokinetics, and biodistribution studies of a beta-galactoside prodrug of DOX. In vivo safety evaluation was done in the Ehrlich Ascites Carcinoma (EAC) tumor model. The dose of DOX was 8 mg/kg and the dose of prodrug was 8 mg/kg and 24 mg/kg of DOX equivalents. Our results on cytotoxicity, which demonstrated compression in the number of EAC cells and their viability, substantiate these data. Prodrug 1 was safe up to a dose of 24 mg/kg of DOX equivalents in EAC mice. The pharmacokinetics and biodistribution of prodrug (300 mg/kg) in normal mice were determined and compared with DOX (20 mg/kg). Administration of DOX in normal mice resulted in a peak plasma concentration of 19.45 microM (t = 30 minutes). Prodrug injection resulted in 3- to 16-fold lower concentrations in the tissues of normal mice. As it is more polar, lower levels were observed in tissues and plasma in contrast to the parent compound DOX. In vivo safety studies have shown that prodrug 1 had a maximum tolerated dose compared with DOX and led to improved pharmacokinetics in normal mice.  相似文献   
7.
Bioactive ceramic coatings based on calcium phosphates yield better functionality in the human body for a variety of metallic implant devices including orthopaedic and dental prostheses. In the present study chemically and hence functionally gradient bioceramic coating was obtained by pulsed laser deposition method. Calcium phosphate bioactive ceramic coatings based on hydroxyapatite (HA) and tricalcium phosphate (TCP) were deposited over titanium substrate to produce gradation in physico-chemical characteristics and in vitro dissolution behaviour. Sintered targets of HA and α-TCP were deposited in a multi target laser deposition system. The obtained deposits were characterized by X-ray diffraction, fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray analysis. Inductively coupled plasma spectroscopy was used to estimate the in vitro dissolution behaviour of coatings. The variation in mechanical property of the gradient layer was evaluated through scratch test and micro-indentation hardness. The bioactivity was examined in vitro with respect to the ability of HA layer to form on the surface as a result of contact with simulated body fluid. It could be inferred that chemically gradient functional bioceramic coating can be produced by laser deposition of multiple sintered targets with variable chemical composition.  相似文献   
8.
The physicomechanical properties of functionally active poly(hydroxyethyl methacrylate‐co‐methyl methacrylate) [poly(HEMA‐co‐MMA)] are evaluated. It has been reported that the surface phosphorylated poly(HEMA‐co‐MMA) is capable of eliciting direct bone bonding when implanted in vivo. Hence, it is important to examine the physicomechanical property of the copolymer as a function of surface modification. The properties assessed are differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), equilibrium swelling, compressive strength, and dynamic mechanical analysis. According to the DSC data, the glass transition temperature, Tg of poly(HEMA‐co‐MMA) is not significantly altered by surface phosphorylation. The TGA results demonstrated that unmodified and surface phosphorylated copolymers have similar degradation profile. The differential thermal analysis further supports the data. The equilibrium swelling of functionalized poly(HEMA‐co‐MMA) in phosphate buffer saline ascertained that surface phosphorylation significantly increased the hydrophilicity of the copolymer. The study further illustrated that the percentage of equilibrium swelling appreciably increases with increase in HEMA content in the copolymer and reached a plateau after 100 h. Both compressive strength and compressive modulus of poly (HEMA‐co‐MMA) decreased due to surface phosphorylation while dynamic storage modulus value was not altered. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
9.
The natural timing devices of organisms, commonly known as biological clocks, are composed of specific complex folding molecules that interact to regulate the circadian rhythms. Circadian rhythms, the changes or processes that follow a 24-h light–dark cycle, while endogenously programmed, are also influenced by environmental factors, especially in sessile organisms such as plants, which can impact ecosystems and crop productivity. Current knowledge of plant clocks emanates primarily from research on Arabidopsis, which identified the main components of the circadian gene regulation network. Nonetheless, there remain critical knowledge gaps related to the molecular components of circadian rhythms in important crop groups, including the nitrogen-fixing legumes. Additionally, little is known about the synergies and trade-offs between environmental factors and circadian rhythm regulation, especially how these interactions fine-tune the physiological adaptations of the current and future crops in a rapidly changing world. This review highlights what is known so far about the circadian rhythms in legumes, which include major as well as potential future pulse crops that are packed with nutrients, particularly protein. Based on existing literature, this review also identifies the knowledge gaps that should be addressed to build a sustainable food future with the reputed “poor man’s meat”.  相似文献   
10.
Y-Ba-Cu-O powder, having desirable composition, particle size, compaction, and sintering properties, has been prepared by a novel combustion process involving metal nitrate-urea decomposition. Single-phase Y-Ba-Cu-O is obtained by reacting the mixture of yttrium, barium, and copper nitrates in 123 stoichiometry with urea at 900°C for a period of 1 h. Following grinding in acetone the powder possessed an average particle size of 1 μm, a surface area of 42.2 m2/g, a bulk density of 2.7 g/cm3, and could be sintered to 92% theoretical density at 930°C with the resulting material having a T c of 90 K.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号