首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56706篇
  免费   5886篇
  国内免费   3465篇
电工技术   3798篇
技术理论   3篇
综合类   5213篇
化学工业   8843篇
金属工艺   3258篇
机械仪表   3278篇
建筑科学   4960篇
矿业工程   1713篇
能源动力   1802篇
轻工业   4730篇
水利工程   1199篇
石油天然气   2739篇
武器工业   427篇
无线电   6462篇
一般工业技术   6132篇
冶金工业   2344篇
原子能技术   750篇
自动化技术   8406篇
  2024年   128篇
  2023年   975篇
  2022年   1584篇
  2021年   2369篇
  2020年   1830篇
  2019年   1750篇
  2018年   1789篇
  2017年   1929篇
  2016年   1624篇
  2015年   2335篇
  2014年   2765篇
  2013年   3268篇
  2012年   3520篇
  2011年   3704篇
  2010年   3400篇
  2009年   3182篇
  2008年   3167篇
  2007年   2998篇
  2006年   2902篇
  2005年   2338篇
  2004年   2168篇
  2003年   2750篇
  2002年   3820篇
  2001年   3173篇
  2000年   1652篇
  1999年   1206篇
  1998年   675篇
  1997年   590篇
  1996年   567篇
  1995年   457篇
  1994年   377篇
  1993年   257篇
  1992年   218篇
  1991年   132篇
  1990年   112篇
  1989年   81篇
  1988年   68篇
  1987年   37篇
  1986年   37篇
  1985年   27篇
  1984年   22篇
  1983年   11篇
  1982年   11篇
  1981年   11篇
  1980年   15篇
  1979年   10篇
  1977年   2篇
  1965年   3篇
  1959年   5篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Two types of spherical zirconyl oxalate aqueous sols were successfully customized by a reverse micelles-mediated aqueous sol-gel process, and the sols were sequentially spin-coated on porous supports to prepare ZrO2 loose/tight bilayer ultrafiltration membranes. After three times of spin-coating process, a defect-free ZrO2 loose ultrafiltration membrane with pure water permeability of 110.5 ± 2.25 L m?2 h-1 bar-1, molecular weight cut-off (MWCO) of 16.5 kDa and excellent rejection of up to 97.5 % for bovine serum albumin was fabricated. Then, the loose ultrafiltration membrane was used as a substrate to prepare ZrO2 tight ultrafiltration membrane. Performances of tight ultrafiltration membrane regarding to permeability, retention of polyethylene glycol and treatment of dyes wastewater were evaluated. The tight ultrafiltration membrane with a thickness of 200 nm exhibited a pure water permeability of 22.5 ± 0.3 L m-2 h-1 bar-1 and MWCO of 1150 Da. Additionally, the rejections of methyl red and methyl orange by the tight ultrafiltration membrane were both <65 %, while of alizarin red, direct red, bromocresol green and methyl blue achieved maximum values of 98.5 %, 99.2 %, 99.5 % and 99.6 %, respectively. The fouled membranes could restore the virgin performance for reuse by cleaning and low-temperature calcination.  相似文献   
2.
In this study, C/SiOC and C/SiO2 composites were prepared by using carbonaceous microspheres with different surface functional groups. Carbonaceous microspheres based on hydrothermal reaction of glucose contains hydroxyl group, while the surface carboxyl group increases after NaOH etching. The hydroxyl group increases the oxygen-enriched structural units of SiOC ceramics, and the C spheres are closely enwrapped in SiOC matrix after pyrolysis at 900 °C. However, the interfacial reaction of surface carboxyl with Si–OH results in the formation of cristobalite SiO2, and C spheres are not only encased inside the SiOC matrix, but also dispersed outside of SiOC ceramics. After removal of C via calcination at 500 °C for 5 h, C/SiOC and C/SiO2 composites are transformed into amorphous SiO2 and cristobalite SiO2, respectively. The thermogravimetric analysis indicates the oxidation resistance of SiOC is superior to that of C and SiO2.  相似文献   
3.
王海宁  池卓哲 《包装工程》2021,42(12):84-90, 97
目的 为了更科学地研究和检验可穿戴产品的适合性,提出一种适合性检验方法,能够精确保留现实环境中的产品佩戴关系,并能将现实与虚拟的适合性检验研究相结合,得到合理的适合性检验结果.方法 以虚拟现实眼镜的适合性检验为例,通过高精度的三维测量技术将现实环境中的人、产品以及人—产品佩戴关系转化为三维虚拟信息,并以人—产品佩戴三维模型为参考基准对齐人和产品的虚拟模型,得到保留现实佩戴关系的人—产品佩戴模型组,再应用偏差分析法得出人—机佩戴区域的可视化适合性结果和统计数据,结合主观评价方法进一步分析产品的适合性.结论 虚实结合的产品适合性检验方法可在虚拟环境中高精度地保留现实环境中的人—产品佩戴关系,并能得到可视化的适合性检验结果,为检验和指导产品的适合性提供依据.  相似文献   
4.
氢脆具有很强的微观组织敏感性,威胁着各类高强结构材料的安全服役.采用激光-电弧复合焊工艺对BS960E型高强钢进行焊接,并对接头在原位电化学充氢的条件下进行慢应变速率(10-5s-1)拉伸试验,结合微观组织和断裂特征进行分析并对接头的氢脆行为进行研究.结果 表明,焊接热循环所形成的富马氏体中的细晶区可以使接头表现出一定的氢脆敏感性,马氏体较大的氢扩散系数和较低的氢溶解度以及氢在晶界上的快速扩散是引起接头对氢脆敏感的主要原因,通过控制焊接工艺参数可抑制焊接热循环所引起的马氏体转变量,能够降低BS960E型高强钢激光-电弧复合焊接头的氢脆敏感性.  相似文献   
5.
The effects of ultraviolet (UV) radiation, particularly UV-B on algae, have become an important issue as human-caused depletion of the protecting ozone layer has been reported. In this study, the effects of different short-term UV-B radiation on the growth, physiology, and metabolism of Porphyra haitanensis were examined. The growth of P. haitanensis decreased, and the bleaching phenomenon occurred in the thalli. The contents of total amino acids, soluble sugar, total protein, and mycosporine-like amino acids (MAAs) increased under different UV-B radiation intensities. The metabolic profiles of P. haitanensis differed between the control and UV-B radiation-treated groups. Most of the differential metabolites in P. haitanensis were significantly upregulated under UV-B exposure. Short-term enhanced UV-B irradiation significantly affected amino acid metabolism, carbohydrate metabolism, glutathione metabolism, and phenylpropane biosynthesis. The contents of phenylalanine, tyrosine, threonine, and serine were increased, suggesting that amino acid metabolism can promote the synthesis of UV-absorbing substances (such as phenols and MAAs) by providing precursor substances. The contents of sucrose, D-glucose-6-phosphate, and beta-D-fructose-6-phosphate were increased, suggesting that carbohydrate metabolism contributes to maintain energy supply for metabolic activity in response to UV-B exposure. Meanwhile, dehydroascorbic acid (DHA) was also significantly upregulated, denoting effective activation of the antioxidant system. To some extent, these results provide metabolic insights into the adaptive response mechanism of P. haitanensis to short-term enhanced UV-B radiation.  相似文献   
6.
In this work, we developed a novel system of isovalent Zr4+ and donor Nb5+ co-doped CaCu3Ti4O12 (CCTO) ceramics to enhance dielectric response. The influences of Zr4+ and Nb5+ co-substituting on the colossal dielectric response and relaxation behavior of the CCTO ceramics fabricated by a conventional solid-phase synthesis method were investigated methodically. Co-doping of Zr4+ and Nb5+ ions leads to a significant reduction in grain size for the CCTO ceramics sintered at 1060 °C for 10 h. XRD and Raman results of the CaCu3Ti3.8-xZrxNb0.2O12 (CCTZNO) ceramics show a cubic perovskite structure with space group Im-3. The first principle calculation result exhibits a better thermodynamic stability of the CCTO structure co-doped with Zr4+ and Nb5+ ions than that of single-doped with Zr4+ or Nb5+ ion. Interestingly, the CCTZNO ceramics exhibit greatly improved dielectric constant (~105) at a frequency range of 102–105 Hz and at a temperature range of 20–210 °C, indicating a giant dielectric response within broader frequency and temperature ranges. The dielectric properties of CCTZNO ceramics were analyzed from the viewpoints of defect-dipole effect and internal barrier layer capacitance (IBLC) model. Accordingly, the immensely enhanced dielectric response is primarily ascribed to the complex defect dipoles associated with oxygen vacancies by co-doping Zr4+ and Nb5+ ions into CCTO structure. In addition, the obvious dielectric relaxation behavior has been found in CCTZNO ceramics, and the relaxation process in middle frequency regions is attributed to the grain boundary response confirmed by complex impedance spectroscopy and electric modulus.  相似文献   
7.
Improving the piezoelectric activity of lead zirconate titanate (PZT) ceramics is of great importance for practical applications. In this study, the influence of Pr3+ doping on the ferroelectric phase composition, microstructure, and electric properties on the A-site of (Pb1-1.5xPrx)(Zr0.52Ti0.48)O3 is extensively investigated. A dense and fine microstructural sample is obtained with the introduction of Pr3+. The results show that the morphotropic phase boundary (MPB) moves to the rhombohedral phase region. The rhombohedral and tetragonal phases exhibit an ideal coexistence in the 4 mol.% Pr3+ doped (PPZT4) samples. Lead vacancy and the reduction of the potential energy barrier are considered to be the key mechanisms for donor doping, which is upheld by the Pr3+ doping. Combining the I-E hysteresis loops with the P-E hysteresis loops, it becomes apparent that both contribution maximums of the domain switching and residual polarisation are in PPZT4. Moreover, the thermal aging resistance of PZT is improved by doping, and the temperature stability is optimised from 83% in PZT to 96% in PPZT4. Hence, an appropriate amount of Pr3+ doping can effectively improve the piezoelectric activity of PZT ceramics in the MPB area and optimise the performance stability of the material under application temperatures.  相似文献   
8.
Diamond-like carbon (DLC) possesses brilliant and excellent properties, including excellent corrosion resistance as well as outstanding wear resistance. Ni and B co-doped DLC films were deposited on AZ91D magnesium alloy by electrodeposition under mild conditions (300 V and 25°C). Uniform and dense morphology of co-doped DLC films were observed, and Ni and B were uniformly incorporated into the carbon-based films. Among all the electrodeposits, the appearance of D and G peaks near 1330 and 1570 cm−1 revealed that the as-deposited films were typical DLC films. As the addition of Ni was increased to 0.05 g, the highest microindentation hardness, the lowest friction coefficient, and wear loss were achieved to be 164.5 HV, 0.3, and 0.6 × 10−5 kg/m, respectively. The amorphous carbon films fabricated at 0.05 g Ni had the lowest corrosion current density and the most positive corrosion potential, which was mainly due to the small and dense granular structure effectively hindering the penetration of corrosion media.  相似文献   
9.
The realization of liquid metal-based wearable systems will be a milestone toward high-performance, integrated electronic skin. However, despite the revolutionary progress achieved in many other components of electronic skin, liquid metal-based flexible sensors still suffer from poor sensitivity due to the insufficient resistance change of liquid metal to deformation. Herein, a nacre-inspired architecture composed of a biphasic pattern (liquid metal with Cr/Cu underlayer) as “bricks” and strain-sensitive Ag film as “mortar” is developed, which breaks the long-standing sensitivity bottleneck of liquid metal-based electronic skin. With 2 orders of magnitude of sensitivity amplification while maintaining wide (>85%) working range, for the first time, liquid metal-based strain sensors rival the state-of-art counterparts. This liquid metal composite features spatially regulated cracking behavior. On the one hand, hard Cr cells locally modulate the strain distribution, which avoids premature cut-through cracks and prolongs the defect propagation in the adjacent Ag film. On the other hand, the separated liquid metal cells prevent unfavorable continuous liquid-metal paths and create crack-free regions during strain. Demonstrated in diverse scenarios, the proposed design concept may spark more applications of ultrasensitive liquid metal-based electronic skins, and reveals a pathway for sensor development via crack engineering.  相似文献   
10.
Large interfacial resistance plays a dominant role in the performance of all-solid-state lithium-ion batteries. However, the mechanism of interfacial resistance has been under debate. Here, the Li+ transport at the interfacial region is investigated to reveal the origin of the high Li+ transfer impedance in a LiCoO2(LCO)/LiPON/Pt all-solid-state battery. Both an unexpected nanocrystalline layer and a structurally disordered transition layer are discovered to be inherent to the LCO/LiPON interface. Under electrochemical conditions, the nanocrystalline layer with insufficient electrochemical stability leads to the introduction of voids during electrochemical cycles, which is the origin of the high Li+ transfer impedance at solid electrolyte-electrode interfaces. In addition, at relatively low temperatures, the oxygen vacancies migration in the transition layer results in the formation of Co3O4 nanocrystalline layer with nanovoids, which contributes to the high Li+ transfer impedance. This work sheds light on the mechanism for the high interfacial resistance and promotes overcoming the interfacial issues in all-solid-state batteries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号