首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
化学工业   5篇
轻工业   2篇
无线电   1篇
一般工业技术   27篇
冶金工业   1篇
自动化技术   3篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   6篇
  2004年   2篇
  2003年   4篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1996年   1篇
  1991年   1篇
  1982年   1篇
排序方式: 共有39条查询结果,搜索用时 93 毫秒
1.
Polystyrenes, polyacrylates, and poly(3,4-isoprenes) incorporating the hexafluorodimethylcarbinol functionality have been synthesized, characterized, and tested as microsensor coatings on a surface acoustic wave (SAW) device for dimethyl methylphosphonate (DMMP) vapor absorption sensitivity. The syntheses involved monomer functionalization and polymerization or hexafluoroacetone reaction with preformed polymer. All fluoroalcohol functionalized polymer coatings displayed sub parts per million level sensitivity with the slope of the absorption isotherm steepest at low DMMP concentrations. The order of sensitivity for the isomeric polystyrene fluoroalcohols (meta > para ? ortho) paralleled that of the relative free hydroxyl to hydrogen-bonded hydroxyl content. Strong hydrogen bonding between the fluoroalcohol polymers and DMMP vapor was observed by IR spectroscopy. Acylation of the fluoroalcohol group markedly reduced the DMMP sensitivity.  相似文献   
2.
A sample preparation sequence for actinide isotopic analysis by thermal ionization mass spectrometry (TIMS) is described that includes column-based extraction chromatography as the first separation step, followed by anion-exchange column separations. The sequence is designed to include a wet ashing step after the extraction chromatography to prevent any leached extractant or oxalic acid eluent reagents from interfering with subsequent separations, source preparation, or TIMS ionization. TEVA resin and DGA resin materials, containing extractants that consist only of C, N, O, and H atoms, were investigated for isolation of plutonium. Radiotracer level studies confirmed expected high yields from column-based separation procedures. Femtogram-level studies were carried out with TIMS detection, using multiple monoisotopic spikes applied sequentially throughout the separation sequence. Pu recoveries were 87% and 86% for TEVA and DGA resin separations, respectively. The Pu recoveries from 400 μL anion-exchange column separation sequences were 89% and 93% for trial sequences incorporating TEVA and DGA resin. Thus, a prior extraction chromatography step in the sequence did not interfere with the subsequent anion-exchange separation when a simple wet ash step was carried out in between these column separations. The average measurement efficiency for Pu, encompassing the chemical separation recoveries and the TIMS ionization efficiency, was 2.73% ± 0.77% (2σ) for the DGA resin trials and 2.67% ± 0.54% for the TEVA resin trials, compared to 3.41% and 2.37% (average 2.89%) for two control trials. These compare with an average measurement efficiency of 2.78% ± 1.70%, n = 33 from process benchmark analyses using Pu spikes processed through a sequence of oxalate precipitation, wet ash, iron hydroxide precipitation, and anion-exchange column separations. We conclude that extraction chromatography can be a viable separation procedure as part of a multistep sequence for TIMS sample preparation.  相似文献   
3.
The use of a thin film of monolayer-protected gold nanoparticles (MPNs) as a stationary phase for gas chromatography (GC) is reported. Deposition of a MPN film was obtained in a 2-m, 530-microm-i.d. deactivated silica capillary using gravity to force the solution containing the MPN material through the capillary. By SEM analysis, the average film thickness was determined to be 60.7 nm. The retention behavior for the dodecanethiol MPN column was studied using four compound classes (alkanes, alcohols, aromatics, ketones), and retention orders were objectively compared to a commercially available column (AT-1, 100-nm film thickness). Separation of an eight-component mixture was performed using both isothermal and temperature-programming methods with the dodecanethiol MPN phase and compared to an isothermal separation with the AT-1 phase. The AT-1 phase separation had an efficiency, N, of 6200 (k' = 0.33) while the dodecanethiol MPN phase separation had an efficiency, N, of 5700 (k' = 0.21) for the same analyte, octane. The reduced plate height, h, for octane was found to be less than 1 at the optimum linear flow velocity, indicating the MPN column operated near the optimum possible performance level. Robustness of the MPN phase is also discussed with consistent performance observed over several months. Overall, MPNs appear promising as a stationary-phase material for GC and as an experimental platform to study their thermodynamic and mass-transfer properties.  相似文献   
4.
Selectivity patterns for the sorption of organic vapors from the gas phase into cavitand monolayers on acoustic wave sensors are very similar to those seen for sorption of the same vapors by amorphous polymers, demonstrating that the vapor/cavitand selectivity patterns are determined primarily by solubility interactions. The amorphous polymers serve as controls demonstrating that the three-dimensional structure of a cavitand layer is not primarily responsible for the selectivity observed. Binding and selectivity in the examples cited are governed primarily by general dispersion interactions and not by specific oriented interactions that could lead to molecular recognition.  相似文献   
5.
An automated procedure for the determination of (99)Tc in aged nuclear waste has been developed. Using advanced sequential injection (SI) analysis instrumentation, (99)Tc(VII) is separated from radioactive and stable interferences using a TEVA resin column that selectively retains pertechnetate ion from dilute nitric acid solutions. The separated (99)Tc is eluted with 6 M nitric acid and quantified on-line with a flow-through liquid scintillation detector. A stopped-flow technique has been optimized that improves the analysis precision and detection limit compared to continuous-flow detection, reduces consumption of liquid scintillation cocktail, and increases sample throughput by separating the next sample while the present sample is being counted. The detection limit is 30 pCi, or 2 ng, of (99)Tc, using a 15-min stopped-flow period. The analysis time is 40 min for the first sample and is reduced to 20 min for each subsequent sample. Processed nuclear waste samples from the Hanford site were successfully analyzed by this new method.  相似文献   
6.
The architectural landscape of high-performance computing stretches from superscalar uniprocessor to explicitly parallel systems, to dedicated hardware implementations of algorithms. Single-purpose hardware can achieve the highest performance and uniprocessors can be the most programmable. Between these extremes, programmable and reconfigurable architectures provide a wide range of choice in flexibility, programmability, computational density, and performance. The UCSC Kestrel parallel processor strives to attain single-purpose performance while maintaining user programmability. Kestrel is a single-instruction stream, multiple-data stream (SIMD) parallel processor with a 512-element linear array of 8-bit processing elements. The system design focuses on efficient high-throughput DNA and protein sequence analysis, but its programmability enables high performance on computational chemistry, image processing, machine learning, and other applications. The Kestrel system has had unexpected longevity in its utility due to a careful design and analysis process. Experience with the system leads to the conclusion that programmable SIMD architectures can excel in both programmability and performance. This work presents the architecture, implementation, applications, and observations of the Kestrel project at the University of California at Santa Cruz.  相似文献   
7.
8.
We describe the development and application of an electromagnetic flow cell and fluidics system for automated immunomagnetic separation (IMS) of Escherichia coli O157:H7 directly from poultry carcass rinse. We further describe the biochemical coupling of automated sample preparation with nucleic acid microarrays. Both the cell concentration system and microarray detection method did not require cell growth or enrichment from the poultry carcass rinse prior to IMS. Highly porous Ni foam was used to enhance the magnetic field gradient within the flow path, providing a mechanism for immobilizing immunomagnetic particles throughout the fluid rather than the tubing wall. A maximum of 32% recovery efficiency of non-pathogenic E. coli was achieved within the automated system with 6 s cell contact times using commercially available antibodies targeted against the O and K antigens. A 15-min protocol (from sample injection though elution) provided a cell recovery efficiency that was statistically similar to > I h batch captures. O157:H7 cells were reproducibly isolated directly from poultry carcass rinse with 39% recovery efficiency at 10(3) CFU ml(-1) inoculum. Direct plating of washed beads showed positive recovery of O157:H7 directly from poultry carcass rinse at an inoculum of 10 CFU ml(-1). Recovered beads were used for direct polymerase chain reaction (PCR) amplification and microarray detection, with a process-level detection limit (automated cell concentration though microarray detection) of < 10(3)CFU ml(-1) in poultry carcass rinse.  相似文献   
9.
An automated fluidic instrument is described that rapidly determines the total (99)Tc content of aged nuclear waste samples, where the matrix is chemically and radiologically complex and the existing speciation of the (99)Tc is variable. The monitor links microwave-assisted sample preparation with an automated anion exchange column separation and detection using a flow-through solid scintillator detector. The sample preparation steps acidify the sample, decompose organics, and convert all Tc species to the pertechnetate anion. The column-based anion exchange procedure separates the pertechnetate from the complex sample matrix, so that radiometric detection can provide accurate measurement of (99)Tc. We developed a preprogrammed spike addition procedure to automatically determine matrix-matched calibration. The overall measurement efficiency that is determined simultaneously provides a self-diagnostic parameter for the radiochemical separation and overall instrument function. Continuous, automated operation was demonstrated over the course of 54 h, which resulted in the analysis of 215 samples plus 54 hly spike-addition samples, with consistent overall measurement efficiency for the operation of the monitor. A sample can be processed and measured automatically in just 12.5 min with a detection limit of 23.5 Bq/mL of (99)Tc in low activity waste (0.495 mL sample volume), with better than 10% RSD precision at concentrations above the quantification limit. This rapid automated analysis method was developed to support nuclear waste processing operations planned for the Hanford nuclear site.  相似文献   
10.
The selective layer on a gas phase chemical microsensor plays a critical role in the sensitivity and selectivity of the sensor's response. Polymers can rapidly and reversibly absorb vapor molecules. As sorptive layers on chemical sensors, polymers are useful for a variety of chemical microsensor types and transduction mechanisms, either as is or as composites with conductive particles or dyes. The performance requirements for polymers are described in terms of their chemical and physical properties. A versatile synthetic approach for preparing sensing polymers has been developed using hydrosilylation chemistry to prepare carbosiloxane polymers. Polymers with diverse chemical selectivities have been prepared by this method. Furthermore, sorptive polymer materials can be photopatterned into defined areas on surfaces using a photoactivated catalyst and hydrosilylation chemistry. Polymer films with diverse chemical selectivities have been patterned with this new method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号