首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   2篇
化学工业   3篇
机械仪表   1篇
建筑科学   4篇
能源动力   15篇
无线电   2篇
一般工业技术   5篇
冶金工业   2篇
自动化技术   6篇
  2022年   3篇
  2020年   2篇
  2016年   1篇
  2014年   3篇
  2013年   3篇
  2012年   5篇
  2011年   2篇
  2010年   4篇
  2009年   7篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有38条查询结果,搜索用时 156 毫秒
1.
Robinson  Kyle  Mago  Vijay 《Wireless Networks》2022,28(3):1189-1196
Wireless Networks - The advent of spam on social media platforms has lead to a number of problems not only for social media users but also for researchers mining social media data. While there has...  相似文献   
2.
3.
This paper evaluates the economic, energetic, and environmental feasibility of using two power generation units (PGUs) to operate a combined heat and power (CHP) system. Several benchmark buildings developed by the Department of Energy simulated using the weather data for Chicago, IL, are used to analyze the proposed configuration. This location has been selected because it usually provides favorable CHP system conditions in terms of cost and emission reduction. For the proposed configuration, one PGU is operated at base load to satisfy part of the electricity building requirements, whereas the other is used to satisfy the remaining electricity requirement operating following the electric load. The dual‐PGU CHP configuration (D‐CHP) is modeled for four different scenarios to determine the optimum operating range for the selected benchmark buildings. The dual‐PGU scenario is compared with the reference building using conventional technology to determine the benefits of this proposed system in terms of operational cost, primary energy reduction, and carbon dioxide emissions. The D‐CHP system results are also compared with a CHP system operating following the electric load (FEL) and base‐loaded CHP system. For three of the selected buildings, the proposed D‐CHP system provides comparable or greater savings in operating cost, primary energy consumption, and carbon dioxide emissions than the optimized conditions for base loading and FEL. In addition, the effect of operating the D‐CHP system only during certain months of the year on the overall operational cost is also evaluated. Results indicate that not operating the D‐CHP system for the months where the thermal load is too low is beneficial for the overall system performance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
4.
The use of combined heating and power (CHP) systems to produce both electricity and heat is increasing rapidly due to their high potential of reducing primary energy consumption (PEC), cost, and emissions in domestic, commercial, and industrial applications. In addition to producing both electricity and heat, CHP systems can be coupled with vapor compression systems to provide cooling. This paper analyzes a natural gas engine CHP system together with a vapor compression system for different American climate zones. Performance is measured in terms of operational costs, PEC, and carbon dioxide emissions as a percent of a reference building. The objective of this paper is to compare the performance of a CHP system operating 24 h a day with a system that only operates during typical office hours. Furthermore, the system is optimized based on reducing PEC, minimizing costs, and reducing emissions. In addition, the benefits of CHP systems based on the Energy Star program and the Leadership in Energy and Environmental Design (LEED) program are presented. Results show that, in general, it is more beneficial to operate the CHP system during typical office hours than to operate the system 24 h a day. Also, the CHP system performance strongly depends on the location where it is installed. In addition to reductions in cost, primary energy, and emissions, CHP systems can help achieve the Energy Star label for commercial office buildings and help obtain LEED points that go toward achieving LEED certification status. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
5.
The exergy topological method is used to present a quantitative estimation of the exergy destroyed in an organic Rankine cycle (ORC) operating on R113. A detailed roadmap of exergy flow is presented using an exergy wheel, and this visual representation clearly depicts the exergy accounting associated with each thermodynamic process. The analysis indicates that the evaporator accounts for maximum exergy destroyed in the ORC and the process responsible for this is the heat transfer across a finite temperature difference. In addition, the results confirm the thermodynamic superiority of the regenerative ORC over the basic ORC since regenerative heating helps offset a significant amount of exergy destroyed in the evaporator, thereby resulting in a thermodynamically more efficient process. Parameters such as thermodynamic influence coefficient and degree of thermodynamic perfection are identified as useful design metrics to assist exergy‐based design of devices. This paper also examines the impact of operating parameters such as evaporator pressure and inlet temperature of the hot gases entering the evaporator on ORC performance. It is shown that exergy destruction decreases with increasing evaporator pressure and decreasing turbine inlet temperatures. Finally, the analysis reveals the potential of the exergy topological methodology as a robust technique to identify the magnitude of irreversibilities associated with real thermodynamic processes in practical thermal systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
6.
In this paper a semi-empirical model describing heat and mass transfer on a cold surface in humid air under supersaturated frosting conditions is presented. The lack of psychrometric data in the supersaturated zone of the psychrometric chart has historically impeded the ability of researchers to accurately predict heat and mass transfer in supersaturated air. The work described in this paper has been partially made possible by developing a systematic procedure to compute the properties of supersaturated air, especially in the low temperature zone of the psychrometric chart. Development of such a capability will allow us to predict the amount of frost collected, the frost deposition and heat transfer rates, frost thickness and surface temperature, and other important parameters.  相似文献   
7.
A. Magoń 《Polymer》2009,50(16):3967-127
The qualitative and quantitative thermal analysis of biodegradable poly(lactic acid) PLA is presented. The glass transition, melting process, and heat capacity of a semi-crystalline poly(lactic acid) are studied utilizing the differential scanning calorimetry and temperature-modulated DSC. The mobile amorphous fraction, Wa degree of crystallinity, Wc and rigid-amorphous fraction, WRAF were estimated depending on the thermal history of semi-crystalline PLA. From qualitative thermal analysis, the glass transition of rigid-amorphous phase was observed as a broadening from the changes of heat-flow-rate between mobile glass transition temperature and melting temperature. The amount of the rigid-amorphous fraction (RAF) was evaluated from WRAF = 1−Wc − Wa and graphically was presented as the result of a deflection from the linearity of the dependence of the change of degree of mobile amorphous phase (Wa) vs. the degree of crystalline fraction (Wc) for semi-crystalline PLA with different thermal history. The degree of crystallinity of semi-crystalline samples of PLA can be discussed in terms of a two- or three-phase model. In contrast, the quantitative thermal analysis of the experimental apparent heat capacity of semi-crystalline PLA did not show any appearance of RAF in the examples of analyzed samples. The experimental heat capacity of PLA was analyzed in reference to the solid and liquid equilibrium heat capacities of poly(lactic acid) found in the ATHAS Data Bank.  相似文献   
8.
Cooling, Heating, and Power (CHP) systems have the potential to make better use of fuels than other technologies because of their ability to increase the overall thermal energy efficiency. Feasibility of CHP systems is generally driven by economic savings. In addition, economic evaluation of CHP systems is based on site energy use and cost, which could lead to misleading conclusions about energy savings. Since energy savings from CHP systems only occurs in primary energy, the objective of this investigation is to demonstrate that feasibility of CHP systems should be performed based on primary energy savings followed by economic considerations. This paper also evaluates the effect of the power generation unit (PGU) efficiency over the primary energy reduction when a CHP system is utilized. The advantages of operating CHP systems under a primary energy operational strategy, such as the proposed Building Primary Energy Ratio (BPER) strategy, are also discussed. Results show that for some cases economic savings are attained without the corresponding primary energy savings. However, the use of the BPER operational strategy guarantees better energy performance regardless of economic savings. Regarding to the PGU efficiency, an increase of the efficiency reduces the primary energy use more than proportionally. For example, increasing the PGU efficiency from 0.25 to 0.35 (increase of 40%) can reduce the primary energy use from 5.4% to 16% (increase of 200%).  相似文献   
9.
10.
The objective of this paper is to demonstrate the advantages of using a combined heating and power (CHP) system operating at full load to satisfy a fraction of the facility electric load, that is, a base load. In addition, the effect of using thermal storage during the CHP system operation (CHP‐TS) is evaluated. A small office building and a restaurant with the same floor area, in Chicago, IL, and Hartford, CT, were used to evaluate the base‐loaded CHP and CHP‐TS operation based on operational cost, primary energy consumption (PEC), and carbon dioxide emissions (CDEs). Results indicate that, in general, the use of thermal storage is beneficial for the CHP system operation because it reduces cost, PEC, and CDEs compared with a CHP with no thermal storage. The CHP and CHP‐TS operation is more beneficial for a restaurant than for a small office building for the evaluated cities, which clearly indicates the effect of the thermal load on the CHP system performance. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号