首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   14篇
  国内免费   1篇
电工技术   1篇
综合类   1篇
化学工业   36篇
金属工艺   1篇
机械仪表   7篇
建筑科学   7篇
能源动力   12篇
轻工业   4篇
水利工程   3篇
无线电   15篇
一般工业技术   23篇
自动化技术   26篇
  2023年   7篇
  2022年   4篇
  2021年   11篇
  2020年   7篇
  2019年   8篇
  2018年   9篇
  2017年   10篇
  2016年   11篇
  2014年   11篇
  2013年   16篇
  2012年   11篇
  2011年   12篇
  2010年   4篇
  2009年   5篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2002年   1篇
排序方式: 共有136条查询结果,搜索用时 46 毫秒
1.
Information Systems and e-Business Management - The growing use of the internet of things (IoT) has provided businesses with a new opportunity. This study performed a systematic literature review...  相似文献   
2.
A known strategy for improving the properties of layered oxide electrodes in sodium-ion batteries is the partial substitution of transition metals by Li. Herein, the role of Li as a defect and its impact on sodium storage in P2-Na0.67Mn0.6Ni0.2Li0.2O2 is discussed. In tandem with electrochemical studies, the electronic and atomic structure are studied using solid-state NMR, operando XRD, and density functional theory (DFT). For the as-synthesized material, Li is located in comparable amounts within the sodium and the transition metal oxide (TMO) layers. Desodiation leads to a redistribution of Li ions within the crystal lattice. During charging, Li ions from the Na layer first migrate to the TMO layer before reversing their course at low Na contents. There is little change in the lattice parameters during charging/discharging, indicating stabilization of the P2 structure. This leads to a solid-solution type storage mechanism (sloping voltage profile) and hence excellent cycle life with a capacity of 110 mAh g-1 after 100 cycles. In contrast, the Li-free compositions Na0.67Mn0.6Ni0.4O2 and Na0.67Mn0.8Ni0.2O2 show phase transitions and a stair-case voltage profile. The capacity is found to originate from mainly Ni3+/Ni4+ and O2-/O2-δ redox processes by DFT, although a small contribution from Mn4+/Mn5+ to the capacity cannot be excluded.  相似文献   
3.
The Journal of Supercomputing - With the expansion in the use of IoT, increasing the efficiency of these networks has become even more significant. Objects need reliable communications at suitable...  相似文献   
4.
Ghassemi  Payam  Balazon  Mark  Chowdhury  Souma 《Autonomous Robots》2022,46(6):725-747
Autonomous Robots - Swarm-robotic approaches to search and target localization, where target sources emit a spatially varying signal, promise unparalleled time efficiency and robustness. With most...  相似文献   
5.
Chitosan (CS) and hydrophobic‐modified chitosan (HM‐CS) chains were wrapped onto multiwalled carbon nanotubes (MWNTs) and introduced to polyvinyl alcohol (PVA) matrices as nanohybrid conductive polymer composites (CPCs) for detection of polar vapors. The effect of grafted alkyl groups on polarity of CS chains were studied by quantum mechanics (QM). The designed composites were applied as sensitive layers to clarify the response mechanism in CPCs gas sensors. It was realized that the wrapped biopolymers intensely influenced the sensitivity of the composites. Experiment results specified that the nature of biomacromolecules and their interactions with vapor molecules affects the resistance change in CPCs. The higher interaction of CS with polar vapor molecules caused more plasticization of polymer segments in the MWNTs connections. Such phenomenon enhanced the resistance change in the presence of analytes. Moreover, it was inferred that the semiconductor character of MWNTs has an important effect in the final signals. The more polar structure of CS in comparison with HM‐CS enhanced the adsorption of vapor molecules on the surface of MWNTs, and the electron donor analytes decreased the conductivity of p‐type MWNTs increasing the final responses. The presented results corroborate that the performance of CPCs gas sensors could be finely tuned through manipulation of the nanointerfaces. POLYM. COMPOS., 37:2803–2810, 2016. © 2015 Society of Plastics Engineers  相似文献   
6.
7.
Because failures in lead-free solder joints occur at locations other than the most highly shear-strained regions, reliability prediction is challenging. To gain physical understanding of this phenomenon, physically based understanding of how elastic and plastic deformation anisotropy affect microstructural evolution during thermomechanical cycling is necessary. Upon solidification, SAC305 (Sn-3.0Ag-0.5Cu) solder joints are usually single or tricrystals. The evolution of microstructures and properties is characterized statistically using optical and orientation imaging microscopy. In situ synchrotron x-ray measurements during thermal cycling are used to examine how crystal orientation and thermal cycling history change strain history. Extensive characterization of a low-stress plastic ball grid array (PBGA) package design at different stages of cycling history is compared with preliminary experiments using higher-stress package designs. With time and thermal history, microstructural evolution occurs mostly from continuous recrystallization and particle coarsening that is unique to each joint, because of the specific interaction between local thermal and displacement boundary conditions and the strong anisotropic elastic, plastic, expansion, and diffusional properties of Sn crystals. The rate of development of recrystallized microstructures is a strong function of strain and aging. Cracks form at recrystallized (random) boundaries, and then percolate through recrystallized regions. Complications arising from electromigration and corrosion are also considered.  相似文献   
8.
This paper reports the results of a study conducted to investigate the effect of low volume content of steel fiber on the slump, density, compressive strength under different curing conditions, splitting tensile strength, flexural strength and modulus of elasticity of a grade 35 oil palm shell (OPS) lightweight concrete mixture. The results indicate that an increase in steel fiber decreased the workability and increased the density. All the mechanical properties except the modulus of elasticity (E) improved significantly. The 28 day compressive strength of steel fiber OPS lightweight concrete in continuously moist curing was in the range of 41–45 MPa. The splitting tensile/compressive and the flexural/compressive strength ratio for plain OPS concrete are comparable with artificial lightweight aggregate. The (E) value measured in this study was about 15.5 GPa on average for all mixes, which is higher than previous studies and is in the range of normal weight concrete. Steel fiber can be used as an alternative material to reduce the sensitivity of OPS concrete in poor curing environments.  相似文献   
9.
A differential pulse polarography (DPP) for the simultaneous determination of isoniazid and rifampicin was proposed. Under optimum experimental conditions (pH = 7, scan rate = 10 mV/s, pulse amplitude = −50 mV), serious overlapping polarographic peaks were observed in the mixture of these compounds. In this study, support vector regression (SVR) was applied to modeling the overlapped polarograms. Furthermore, a comparison was made between the performance of SVR and partial least square (PLS) on data set. The experimental calibration matrix was designed with 30 mixtures of these compounds. Calibration graphs were linear in the range of 6 × 10−8-10−4 and 10−7-10−4 M for isoniazid and rifampicin, respectively. The results demonstrated that SVR is a good well-performing alternative for the analysis and modeling of DPP data than the commonly applied PLS technique.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号