首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28749篇
  免费   1129篇
  国内免费   126篇
电工技术   406篇
综合类   67篇
化学工业   5607篇
金属工艺   586篇
机械仪表   656篇
建筑科学   2048篇
矿业工程   163篇
能源动力   831篇
轻工业   2398篇
水利工程   200篇
石油天然气   78篇
武器工业   4篇
无线电   2937篇
一般工业技术   5148篇
冶金工业   3876篇
原子能技术   170篇
自动化技术   4829篇
  2023年   178篇
  2022年   142篇
  2021年   605篇
  2020年   366篇
  2019年   395篇
  2018年   596篇
  2017年   505篇
  2016年   664篇
  2015年   589篇
  2014年   821篇
  2013年   1823篇
  2012年   1382篇
  2011年   1834篇
  2010年   1326篇
  2009年   1332篇
  2008年   1591篇
  2007年   1414篇
  2006年   1237篇
  2005年   1113篇
  2004年   978篇
  2003年   898篇
  2002年   816篇
  2001年   563篇
  2000年   542篇
  1999年   600篇
  1998年   881篇
  1997年   626篇
  1996年   486篇
  1995年   455篇
  1994年   394篇
  1993年   409篇
  1992年   310篇
  1991年   269篇
  1990年   251篇
  1989年   273篇
  1988年   228篇
  1987年   218篇
  1986年   210篇
  1985年   295篇
  1984年   239篇
  1983年   206篇
  1982年   203篇
  1981年   229篇
  1980年   155篇
  1979年   168篇
  1978年   158篇
  1977年   145篇
  1976年   181篇
  1975年   133篇
  1974年   115篇
排序方式: 共有10000条查询结果,搜索用时 421 毫秒
1.
2.
Recent advancements in isolation and stacking of layered van der Waals materials have created an unprecedented paradigm for demonstrating varieties of 2D quantum materials. Rationally designed van der Waals heterostructures composed of monolayer transition-metal dichalcogenides (TMDs) and few-layer hBN show several unique optoelectronic features driven by correlations. However, entangled superradiant excitonic species in such systems have not been observed before. In this report, it is demonstrated that strong suppression of phonon population at low temperature results in a formation of a coherent excitonic-dipoles ensemble in the heterostructure, and the collective oscillation of those dipoles stimulates a robust phase synchronized ultra-narrow band superradiant emission even at extremely low pumping intensity. Such emitters are in high demand for a multitude of applications, including fundamental research on many-body correlations and other state-of-the-art technologies. This timely demonstration paves the way for further exploration of ultralow-threshold quantum-emitting devices with unmatched design freedom and spectral tunability.  相似文献   
3.
With the goal to produce a hard and tough coating intended for tribological applications, CrAlN/TiSiN nanolayer coating was prepared by alternative deposition of CrAlN and TiSiN layers. In the first part of the article, a detailed study of phase composition, microstructure, and layer structure of CrAlN/TiSiN coating is presented. In the second part, its mechanical properties, fracture and tribological behavior are compared to the nanocomposite TiSiN coating. An industrial magnetron sputtering unit was used for coating deposition. X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used for compositional and microstructural analysis. Mechanical properties and fracture behavior were studied by instrumented indentation and focused ion beam techniques. Tribological properties were evaluated by ball-on-disk test in a linear reciprocal mode. A complex layer structure was found in the nanolayer coating. The TiSiN layers were epitaxially stabilized inside the coating which led to formation of dislocations at interfaces, to introduction of disturbances in the coating growth, and as a result, to development of fine-grained columnar microstructure. Indentation load required for the onset of fracture was twice lower for the nanolayer CrAlN/TiSiN, compared to the nanocomposite TiSiN coating. This agrees very well with their mechanical properties, with H3/E2 being twice higher for the TiSiN coating. However, the nanolayer coating experienced less severe damage, which had a strong impact on tribological behavior. A magnitude of order lower wear rate and four times lower steady state friction coefficient were found for the nanolayer coating.  相似文献   
4.
Fluoro-substituted and heteroaromatic compounds are valuable intermediates for a variety of applications in pharma- and agrochemistry and synthetic chemistry. This study investigates the chemoenzymatic preparation of chiral alcohols bearing a heteroaromatic ring with an increasing degree of fluorination in α-position. Starting from readily available picoline derivatives prochiral α-halogenated acyl moieties were introduced with excellent selectivity and 64–95 % yield. The formed carbonyl group was subsequently reduced to the corresponding alcohols using the alcohol dehydrogenase from Lactobacillus kefir, yielding an enantiomeric excess of 95–>99 % and up to 98 % yield.  相似文献   
5.
Selenium-modified nucleosides are powerful tools to study the structure and function of nucleic acids and their protein interactions. The widespread application of 2-selenopyrimidine nucleosides is currently limited by low yields in established synthetic routes. Herein, we describe the optimization of the synthesis of 2-Se-uridine and 2-Se-thymidine derivatives by thermostable nucleoside phosphorylases in transglycosylation reactions using natural uridine or thymidine as sugar donors. Reactions were performed at 60 or 80 °C and at pH 9 under hypoxic conditions to improve the solubility and stability of the 2-Se-nucleobases in aqueous media. To optimize the conversion, the reaction equilibria in analytical transglycosylation reactions were studied. The equilibrium constants of phosphorolysis of the 2-Se-pyrimidines were between 5 and 10, and therefore differ by an order of magnitude from the equilibrium constants of any other known case. Hence, the thermodynamic properties of the target nucleosides are inherently unfavorable, and this complicates their synthesis significantly. A tenfold excess of sugar donor was needed to achieve 40−48 % conversion to the target nucleoside. Scale-up of the optimized conditions provided four Se-containing nucleosides in 6–40 % isolated yield, which compares favorably to established chemical routes.  相似文献   
6.
The price of cobalt has increased by some 450% in the past two years, mainly due to increasing demand for lithium–ion batteries. With an official 2017 production of 64 kt, the Democratic Republic of Congo produces more than half of the world’s cobalt. African Copperbelt operations have traditionally focused on copper production; however, it has now become imperative to also consider cobalt recovery from these ores. A plethora of processing routes is possible. Most hydrometallurgical flowsheets recover cobalt from the raffinate of the low-grade copper solvent-extraction circuit. Downstream purification processes include sequential precipitation with a variety of reagents, solvent extraction, and ion exchange. Product choices include hydroxide, carbonate, sulfate, and metal cathode. This study assesses technical and economic advantages and limitations of various approaches to the hydrometallurgical processing of cobalt in an African context.  相似文献   
7.
Recently, thermal interface materials (TIMs) are in great demands for modern electronics. For mechanically mixed polymer composite TIMs, the thermal conductivity and the mechanical properties are generally lower than expected values due to the sharply increased viscosity and poor filler dispersion. This work shows that addition of a small amount of polyester-based hyperbranched polymer (HBP) avoided the trade-off in mechanically mixed ABS/hexagonal boron nitride (h-BN) composites. After adding 0.5 wt% HBP, the maximum h-BN content in the composites increased from 50 to 60 wt%. The out-of-plane, in-plane thermal conductivity, and tensile strength of ABS/h-BN with 50 wt% h-BN were 0.408, 0.517 W/mK, and 18 MPa, respectively, and were increased to 0.729, 0.847 W/mK, and 32 MPa by adding 0.5 wt% HBP, while 0.972, 1.12 W/mK, and 29.5 MPa were achieved for ABS/h-BN/HBP with 60 wt% h-BN. The morphological and rheological results proved that these enhancements are due to the improved h-BN dispersion by decreasing viscosity of composites during mixing. Theoretical modeling based on the modified effective medium theory confirmed such results and showed that the interfacial thermal resistance also decreased slightly. Thus, this work demonstrates a facile and scalable method for simultaneously improving the thermal conductivity and mechanical properties of thermoplastic-based TIMs.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号