首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   318990篇
  免费   21558篇
  国内免费   10805篇
电工技术   15393篇
技术理论   19篇
综合类   17573篇
化学工业   49573篇
金属工艺   17689篇
机械仪表   18411篇
建筑科学   20413篇
矿业工程   8011篇
能源动力   8308篇
轻工业   19746篇
水利工程   5386篇
石油天然气   15500篇
武器工业   1833篇
无线电   36558篇
一般工业技术   44328篇
冶金工业   14316篇
原子能技术   2814篇
自动化技术   55482篇
  2024年   456篇
  2023年   4134篇
  2022年   6664篇
  2021年   10279篇
  2020年   8037篇
  2019年   6520篇
  2018年   20723篇
  2017年   20726篇
  2016年   16598篇
  2015年   10424篇
  2014年   12564篇
  2013年   15132篇
  2012年   19083篇
  2011年   26083篇
  2010年   22611篇
  2009年   19150篇
  2008年   19863篇
  2007年   19959篇
  2006年   12918篇
  2005年   12329篇
  2004年   8504篇
  2003年   7511篇
  2002年   6224篇
  2001年   5188篇
  2000年   5319篇
  1999年   5995篇
  1998年   5070篇
  1997年   4209篇
  1996年   4028篇
  1995年   3314篇
  1994年   2664篇
  1993年   1965篇
  1992年   1562篇
  1991年   1187篇
  1990年   859篇
  1989年   691篇
  1988年   580篇
  1987年   370篇
  1986年   291篇
  1985年   210篇
  1984年   163篇
  1983年   109篇
  1982年   119篇
  1981年   92篇
  1980年   82篇
  1968年   46篇
  1966年   42篇
  1965年   46篇
  1955年   63篇
  1954年   68篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
Dense pressure-sintered reaction-bonded Si3N4 (PSRBSN) ceramics were obtained by a hot-press sintering method. Precursor Si powders were prepared with Eu2O3–MgO–Y2O3 sintering additive. The addition of Eu2O3–MgO–Y2O3 was shown to promote full nitridation of the Si powder. The nitrided Si3N4 particles had an equiaxial morphology, without whisker formation, after the Si powders doped with Eu2O3–MgO–Y2O3 were nitrided at 1400 °C for 2 h. After hot pressing, the relative density, Vickers hardness, flexural strength, and fracture toughness of the PSRBSN ceramics, with 5 wt% Eu2O3 doping, were 98.3 ± 0.2%, 17.8 ± 0.8 GPa, 697.0 ± 67.0 MPa, and 7.3 ± 0.3 MPa m1/2, respectively. The thermal conductivity was 73.6 ± 0.2 W m?1 K?1, significantly higher than the counterpart without Eu2O3 doping, or with ZrO2 doping by conventional methods.  相似文献   
2.
Samples in Si–Al-R-O-N (R = Y, Gd, Yb) systems were prepared by solid-state reactions using R2O3, Al2O3, SiO2 and Si3N4 powders as starting materials. X-ray diffraction was done to investigate RAM-J(R) solid solutions [RAM = R4Al2O9, J(R) = R4Si2N2O7] formation and their equilibrium with RSO (R4Si2O10). Phase relations between RAM, J(R) and RSO at 1700 °C were summarized in a phase diagram. It was determined that a limited solid solution of RAM and RSO could be formed along RAM-RSO tie-line, while RAM and J(R) form a continuous solid solution along RAM-J(R) tie-line. In RAM-J(R)-RSO ternary systems, the RAM-J(R) tie-lines were extended towards the RSO corner to form a continuous solid solution area of JRAMss (R = Y, Gd, Yb). The established phase relations in the Si–Al-R-O-N (R = Y, Gd, Yb) systems may facilitate compositional selections for developing JRAMss as monolithic ceramics or for SiC/Si3N4 based composites using the solid-solutions as a second refractory phase.  相似文献   
3.
Ce:Y3Al5O12 transparent ceramics (TCs) with appropriate emission light proportion and high thermal stability are significant to construct white light emitting diode devices with excellent chromaticity parameters. In this work, strategies of controlling crystal-field splitting around Ce3+ ion and doping orange-red emitting ion, were adopted to fabricate Ce:(Y,Tb)3(Al,Mn)5O12 TCs via vacuum sintering technique. Notably, 85.4 % of the room-temperature luminescence intensity of the TC was retained at 150 °C, and the color rendering index was as high as 79.8. Furthermore, a 12 nm red shift and a 16.2 % increase of full width at half maximum were achieved owing to the synergistic effects of Tb3+ and Mn2+ ions. By combining TCs with a 460 nm blue chip, a warm white light with a low correlated color temperature of 4155 K was acquired. Meanwhile, the action mechanism of Tb3+ ion and the energy transfer between Ce3+ and Mn2+ ions were verified in prepared TCs.  相似文献   
4.
Refining ceramic microstructures to the nanometric range to minimize light scattering provides an interesting methodology for developing novel optical ceramic materials. In this work, we reported the fabrication and properties of a new nanocomposite optical ceramic of Gd2O3-MgO. The citric acid sol-gel combustion method was adopted to fabricate Gd2O3-MgO nanocomposites with fine-grain sizes, dense microstructures and homogeneous phase domains. Nanopowders with low agglomeration and improved sinterability can be obtained by elaborating Φ values. Further refining of the microstructure of the nanocomposites was achieved by elaborating the hot-pressing conditions. The sample sintered at 65 MPa and 1300 °C showed a quite high hardness value of 14.3 ± 0.2 GPa, a high transmittance of 80.3 %–84.7 % over the 3?6 μm wavelength range, due mainly to its extremely fine-grain size of Gd2O3 and MgO (93 and 78 nm, respectively) and high density.  相似文献   
5.
Chemical durability of lanthanide zirconates (A2Zr2O7) (A = La-Yb) under near-field environments is important for evaluating their application as potential nuclear waste forms. In this work, A2Zr2O7 (A = La-Yb) are synthesized by spark plasma sintering with controlled microstructure and their chemical durability are evaluated in a nitric acid solution (pH = 1). Scanning transmission electron microscopy analysis reveals an amorphous passivation film either enriched with Zr or lanthanide. The complex chemistry of the passivation films can be correlated with a transition in corrosion mechanisms from a preferential release of lanthanide in La2Zr2O7 to a preferential release of Zr in Er2Zr2O7 and Yb2Zr2O7. These results suggest a dominant mechanism of incongruent dissolution and surface reorganization for the formation of passivation films. Strong correlations are identified between the leaching rates and cation ionic size, ionic potential, electronegativity differences between A-site cation and Zr, and bonding valence sum of oxygen, suggesting important impacts of structural and bonding characteristics in controlling chemical durability of lanthanide zirconates.  相似文献   
6.
Immunotherapy is an efficient approach to clinical oncology. However, the immune privilege of the central nervous system (CNS) limits the application of immunotherapeutic strategies for brain cancers, especially glioblastoma (GBM). Tumor resistance to immune checkpoint inhibitors is a further challenge in immunotherapies. To overcome the immunological tolerance of brain tumors, a novel multifunctional nanoparticle (NP) for highly efficient synergetic immunotherapy is reported. The NP contains an anti-PDL1 antibody (aPDL1), upconverting NPs, and the photosensitizer 5-ALA; the surface of the NP is conjugated with the B1R kinin ligand to facilitate transport across the blood-tumor-barrier. Upon irradiation with a 980 nm laser, 5-ALA is transformed into protoporphyrin IX, generating reactive oxygen species. Photodynamic therapy (PDT) further promotes intratumoral infiltration of cytotoxic T lymphocytes and sensitizes tumors to PDL1 blockade therapy. It is demonstrated that combining PDT and aPDL1 can effectively suppress GBM growth in mouse models. The proposed NPs provide a novel and effective strategy for boosting anti-GBM photoimmunotherapy.  相似文献   
7.
The direct-synthesis of conductive PbS quantum dot (QD) ink is facile, scalable, and low-cost, boosting the future commercialization of optoelectronics based on colloidal QDs. However, manipulating the QD matrix structures still is a challenge, which limits the corresponding QD solar cell performance. Here, for the first time a coordination-engineering strategy to finely adjust the matrix thickness around the QDs is presented, in which halogen salts are introduced into the reaction to convert the excessive insulating lead iodide into soluble iodoplumbate species. As a result, the obtained QD film exhibits shrunk insulating shells, leading to higher charge carrier transport and superior surface passivation compared to the control devices. A significantly improved power-conversion efficiency from 10.52% to 12.12% can be achieved after the matrix engineering. Therefore, the work shows high significance in promoting the practical application of directly synthesized PbS QD inks in large-area low-cost optoelectronic devices.  相似文献   
8.
To benefit from recent advances in modeling and computational algorithms,as well as the availability of new covariance data,sensitivity and uncertainty analyses are needed to quantify the impact of uncertain sources on the design parameters of small prismatic high-temperature gas-cooled reactors(HTGRs).In particular,the contribution of nuclear data to the keff uncertainty is an important part of the uncertainty analysis of small-sized HTGR physical calculations.In this study,a small-sized HTGR designed by China Nuclear Power Engineering Co.,Ltd.was selected for keff uncertainty analysis during full lifetime burnup calculations.Models of the cold zero power(CZP)condition and full lifetime burnup process were constructed using the Reactor Monte Carlo Code RMC for neutron transport calculation,depletion calculation,and sensitivity and uncertainty analysis.For the sensitivity analysis,the Contribution-Linked eigenvalue sensitivity/Uncertainty estimation via Track length importance Characterization(CLUTCH)method was applied to obtain sensitive infor-mation,and the"sandwich"method was used to quantify the keff uncertainty.We also compared the keff uncertainties to other typical reactors.Our results show that 235U is the largest contributor to keff uncertainty for both the CZP and depletion conditions,while the contribution of 239Pu is not very significant because of the design of low discharge burnup.It is worth noting that the radioactive capture reaction of 28Si significantly contributes to the keff uncer-tainty owing to its specific fuel design.However,the keff uncertainty during the full lifetime depletion process was relatively stable,only increasing by 1.12%owing to the low discharge burnup design of small-sized HTGRs.These numerical results are beneficial for neutronics design and core parameters optimization in further uncertainty prop-agation and quantification study for small-sized HTGR.  相似文献   
9.
Shen  Aiguo  Ye  Qiubo  Yang  Guangsong  Hao  Xinyu 《Telecommunication Systems》2021,78(4):629-643
Telecommunication Systems - Machine to Machine technology has a broad application prospect in the 5G network, but there is a bottleneck in the energy consumption of intelligent devices powered by...  相似文献   
10.
LiNbO3 crystals activated by Sm3+ and co-doped with Zr4+ (Sm:Zr:LN) or Hf4+ (Sm:Hf:LN) were prepared by the Czochralski method. Detailed investigation on spectroscopic properties was conducted on the frame of Judd-Ofelt (J-O) theory. The J-O intensity parameters Ωi (i = 2, 4, 6), fluorescence branching ratios and radiative lifetime of excited level 4G5/2 were determined. Furthermore, the thermal stability of the strong orange-red emissions obtained under near-UV excitation in both crystals was evaluated. As high as 100% and 97% of integrated intensities at room temperature in Sm:Zr:LN and Sm:Hf:LN respectively were retained at 423 K, demonstrating the suppressed thermal attenuation. The temperature sensing performance based on fluorescence intensity ratio strategy was degraded at higher temperatures with relatively low sensitivities, while the shift of CIE chromaticity coordinates of Sm:Zr:LN and Sm:Hf:LN in the orange-red region was insignificant, demonstrating the color constancy with increasing temperature. With the efficient and thermally stable orange-red luminescence, Sm:Zr:LN and Sm:Hf:LN could serve as promising candidate materials for near-UV excited white light-emitting diodes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号