首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   4篇
化学工业   1篇
一般工业技术   4篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2012年   1篇
排序方式: 共有5条查询结果,搜索用时 140 毫秒
1
1.
本研究提出了一种利用离心纺丝技术制备稳定碳化锆(ZrC)纤维的有效方法。此方法使用醋酸锆和蔗糖作为锆源和碳源, 聚乙烯吡咯烷酮(PVP)作为纺丝助剂, 经过1600 ℃的裂解与碳热还原热处理后, 所纺原丝转化成由均匀纳米ZrC晶体组成的ZrC纤维。研究结果表明, 纤维中残留的少量碳可助力ZrC纤维在2000 ℃的超高温环境下仍保持较好的结构稳定性。  相似文献   
2.
提出了溶胶-凝胶孔道构建-反应熔渗制备新方法,首先通过溶胶凝胶方法在纤维预制体中引入B4C-C多孔体,获得Cf/B4C-C多孔预成型体结构;在此基础上,结合反应熔渗Si-Zr合金,获得Cf/ZrB2-ZrC-SiC超高温陶瓷基复合材料。研究了Cf/B4C-C多孔预成型体结构对RMI过程和材料性能的影响,并揭示了孔隙结构对基体分布和界面损伤及复合材料性能的影响规律。结果表明:通过灵活调控Cf/B4C-C孔隙结构可实现复合材料中ZrB2-ZrC-SiC基体分布改善和(PyC-SiC)2界面损伤缓解,大幅提升材料性能。当预成型体孔隙结构为25.9%和58.0μm时,制备的Cf/ZrB2-ZrC-SiC复合材料基体可均匀分布于纤维束间和束内,同时纤维能得到良好的保护,材料表现出最优的力学性能(抗弯强度231 MPa)。  相似文献   
3.
以熔融的MK树脂(聚甲基倍半硅氧烷)为前驱体, 采用改进的前驱体浸渍裂解法(PIP)制备了致密的C/SiOC复合材料。为了降低MK树脂的固化温度, 选择有机磺酸作为交联剂, 并采用红外光谱分析仪(FT-IR)和热重分析-差热分析仪(TG-DTA)研究了MK树脂的固化机理和陶瓷化行为。研究表明: MK树脂的陶瓷产率高达85wt%, 其裂解得到的SiOC陶瓷自由碳含量低于3wt%, 有利于提高陶瓷的高温稳定性。经过8次PIP制备的C/SiOC复合材料的密度可达1.82 g/cm 3。对得到的C/SiOC复合材料进行三点弯曲测试, 其弯曲强度为(312±25) MPa, 表现出明显的非脆性断裂行为。  相似文献   
4.
以两种不同WC含量、不同球磨介质的无压烧结HfB2-SiC-HfC超高温陶瓷为研究对象, 对比了两套集成式相组成和相成分定量分析方法, 发现基于X射线衍射和扫描电镜分析的HfB2、SiC和HfC相组成和固溶度测量结果相互符合, 都适用于复相陶瓷的综合性定量分析。基于扫描电镜的分析还进一步发现和测量出痕量WB相的含量; XRD-K值法被成功应用于测量固溶度低的相组成。两个对比样品的定量分析结果表明: 烧结助剂含量和球磨介质的改变都不影响W在HfB2和HfC相中的固溶度, 支持了反应致密过程中液相起关键作用的观点; SiC球磨会造成W的损失, 因此Si3N4是更合适的球磨介质。  相似文献   
5.
硼化物陶瓷:烧结致密化、微结构调控与性能提升   总被引:5,自引:0,他引:5  
TiB2、ZrB2、HfB2、B4C及BN为代表的硼化物陶瓷具有优异的物理化学性能,在超高温、超硬以及超疏水等极限条件下有广阔的应用前景,但材料的烧结致密化困难、断裂韧性低等问题制约了它们更为广泛的应用.本文针对无压烧结在材料制备过程中的优势,探讨了影响硼化物陶瓷无压烧结的主要因素,总结了以"除氧"机制为代表的硼化物陶瓷无压烧结技术;针对硼化物陶瓷韧性低的不足,介绍了以"板晶增韧"、"纳米相增强"为代表的硼化物陶瓷微结构调控手段和强韧化措施.最后,文章还对硼化物陶瓷的织构化设计、制备方法与性能提升进行了简要介绍.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号