首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   6篇
综合类   3篇
建筑科学   3篇
一般工业技术   15篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2014年   2篇
  2013年   5篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2006年   1篇
  2005年   2篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
基于DIGIMAT/FE建立含孔隙复合材料细观模型,模型涵盖纤维、树脂和孔隙三相,有效反映了复合材料真实的微结构和细观材料属性,结合通用的ABAQUS/EXPLICIT对细观模型施加超声波激励。通过提取超声波在材料内传播云图,建立了单向连续纤维增强复合材料超声衰减和孔隙率的关系。以T800/环氧树脂复合材料体系为例,研究孔隙尺寸对超声衰减系数模拟结果的影响,并将数值模拟结果与解析模型得到的经验关系进行对比,验证了模型的有效性。该方法能够有效地指导实验过程,为降低复合材料孔隙率、提高其性能提供理论依据。  相似文献   
2.
纤维增强树脂基复合材料机翼结构复杂,往往存在明显的固化变形现象,严重影响机翼的装配和气动特性。本研究目的在于建立大型复合材料复杂结构的热校形工艺方法,解决复合材料机翼制造的变形控制问题。针对复合材料机翼的固化变形特点,设计了新的热校形夹具工装。在评价复合材料应力松弛特性的基础上,建立了大型复合材料机翼结构热校形工艺的有限元模拟方法,实现了对热校形后机翼结构残余变形的有效预报,分析了校形载荷、校形温度等关键工艺参数对校形效果的影响规律,形成优化的热校形工艺方案。模拟及实验结果表明,复合材料热校形工艺可以适用于大型复杂结构,复合材料机翼89.5%的固化变形被热校形工艺的残余变形抵消,达到机翼的装配和气动外形要求。   相似文献   
3.
本文借鉴金属零件热校形工艺的经验,利用复合材料在高温下的应力松弛现象,通过热校形工艺修正复合材料零件的形状。制造了碳纤维平纹织物/环氧复合材料L形梁、C形梁,通过自制的热校形模具,以实验方法研究热校形时间、热校形载荷对零件形状的影响,分析复合材料热校形工艺的可行性。研究表明,复合材料热校形工艺中零件变形的主要原因是零件在高温下发生应力松弛,其他因素可以忽略;热校形载荷、热校形时间都对热校形工艺的效果有重要影响。针对特定的复合材料结构,采用合理的热校形工艺过程能够有效地控制构件形状,方便零件的装配。  相似文献   
4.
5.
应用透水法、改进快速Cl-渗透法及CH2Cl2浸泡法测定了不同强度等级、不同配合比混凝土试件的渗透性。试验结果表明,透水法未考虑实际工程中混凝土所受的约束作用,其适用性对强度等级的依赖性很强;而改进快速Cl-渗透法和CH2Cl2浸泡法避免了上述缺点,且二者得到的混凝土渗透性结果具有较好的相关性。  相似文献   
6.
7.
探讨了复合材料制造成本估算的尺寸效应理论,将理论扩展应用于一阶动力学系统、线性控制系统和质点运动模型中。研究结果表明,在复合材料制造成本估算过程中尺寸效应的影响并不是线性的,通过分析不同制件尺寸及不同成型工艺的制造成本,充分验证了尺寸效应理论的可行性。  相似文献   
8.
成本估算是目前复合材料领域开发研究的关键问题之一,而工艺工时估算又是制造成本估算的核心。本文中建立复合材料制造工艺工时估算模型,以热压釜成型复合材料波纹梁为研究对象进行理论分析和实验研究,给出此估算模型中估算变量和方程参数的确定方法并应用最小二乘法将所得数据进行拟合,其结果与实验结果基本一致。介绍了估算模型中参数随制件曲度变化的修正方法,为实现不同结构设计的工时估算提供指导。  相似文献   
9.
大型复杂框架式模具温度场模拟   总被引:2,自引:0,他引:2  
  相似文献   
10.
Prepreg properties including cure kinetics, cure shrinkage, and coefficient of thermal expansion were analyzed. A simulation method based on "element birth and death" method of Finite element analysis (FEA) was presented to simulate the cutting process and predict the machining deformation for composite laminates and stiffened panels. The comparisons between the simulation results and experimental data showed good agreement. It is found that residual stresses are the main source of machining deformation for composites and machining deformation is expected to happen only if there are stress gradients along the machining direction. There is no machining deformation for composite laminates due to its uniform stresses distribution in plane, while machining deformation can be observed obviously for T-shape stiffened composite panels. Attention should be paid to machining deformation to avoid the mismatch during assembly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号