首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
综合类   1篇
金属工艺   12篇
机械仪表   1篇
一般工业技术   4篇
冶金工业   6篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
利用有限元法研究了热辊热带(HSR-HR)、热辊冷带(NSR-HR)和冷辊热带(HSR-NR)3种不同加热方式下AZ91镁合金轧制过程热-力行为,并进行了大压下率热辊冷带工艺试验和组织性能分析。结果表明,HSR-HR、NSR-HR及HSR-NR 3种加热轧制方式的应力三轴度依次增大,中性点附近应力状态软性系数依次减小。热辊冷带方式通过热量传递兼具变形和退火双重作用, 确保了轧件变形温度和变形均匀性,有利于镁合金塑性变形极限提升和轧制过程裂纹愈合。辊面温度达300 ℃以上时,3道次轧后镁合金带材宏观形貌较好,组织发生了充分的动态再结晶,晶粒细化明显,有效提高了镁合金室温塑性和强度。辊面温度为350 ℃和轧制压下率为67%条件下,轧后带材抗拉强度和伸长率分别达312 MPa和32.3%。  相似文献   
2.
基于网格重划分技术,采用有限元软件Marc对等通道转角挤压(Equal Channel Angular Pressing,ECAP)进行数值模拟,得到了模具转角φ=90°、ψ=0°以及不同摩擦条件下圆形试样ECAP变形过程的网格、载荷变化以及等效应变分布规律。结果表明:由于剪切变形和外摩擦作用,底部网格产生畸变,出口端部形成半球形;圆形ECAP过程经历开始变形、稳定变形和终了三个阶段,在开始变形阶段载荷急剧增加,进入稳定阶段后变化平稳,但由于摩擦和加工硬化作用载荷继续增加;与无摩擦情况相比,摩擦的存在增加了试样与模具接触的接触面积、载荷值以及变形的不均匀性。此外,试样中心较表面变形更均匀,而中间截面相比头尾变形较为均匀。  相似文献   
3.
It is analyzed that the influence factors on temperature field of refrigerator car. The mathematical model of convection diathermanous coefficient has been put forward. It is considered in the model that the parameters of wind speed , car speed , temperature of car surface , temperature of surroundings ,etc. If the boundary conditions and parameters used in calculation model of convection transmits heat coefficient are confirmed as following: the cold plank car velocity V is 120 km/ h, and air temperature is 25 ℃, and the atmosphere press is 1013250 Pa, and wind velocity Vf is 10 m/ s, and the length of car bodywork L is 5 m, and bodywork surface temperature is 25 ℃. The results were obtained by the model: when the wind velocity direction is the same as car velocity, the coefficient K of convection transmits heat is 51.4(W·m-2·K-1), and when the wind velocity direction is against the car velocity, K is 90.58 (W·m-2·K-1).  相似文献   
4.
目的使有限元模拟技术成为一种切实有效的研究方法,进而为高性能反应堆包壳材料的设计以及可能发生的LOCA(Loss of Coolant Accident)事故下的应急措施等提供理论依据。方法基于COMSOL软件模拟分析典型锆合金核材料在LOCA条件下分别经感应加热和电阻加热后的温升行为。结果感应加热条件下,锆材的体积内最高温度、体积平均温度与表面中心点温度的差值随着温度上升逐渐增大,在1200℃瞬时温度下,温度差值最高,约为41℃。电阻加热条件下,锆材的体积内最高温度、体积内中心温度与表面中心点温度在加热的整个阶段近乎重合,最大差值约为3℃;锆材的体积平均温度、表面平均温度与表面中心点温度的差值出现负值,最大差值约为30℃。结论电阻加热和感应加热虽均适用于堆外研究反应堆失水事故下包壳材料所面临的超高温度及超快升温速率的工况模拟,但限于实际工况下电阻加热速率的滞后性,推荐使用感应加热进行后续的模拟研究工作。相关结果可为高性能反应堆包壳材料的设计提供必要的理论依据。  相似文献   
5.
在确立高温叶片冷却过程辐射和对流边界换热系数的基础上,依据有限元理论对In718高温镍基合金末级叶片终锻后的冷却过程进行了热-力耦合三维数值模拟.研究了叶片冷却过程中的温度、应力和应变分布及变形规律.结果表明:初始时刻叶片表面和环境温差较大,温降较快,随着冷却过程进行,温降速度变缓;叶片形状复杂,非均匀的热传导和换热作用使等效应力和应变分布不均匀,从而产生附加内应力,榫头与叶身交接处应力最大,易于产生裂纹:叶片在冷却时发生了严重翘曲,叶尖部分的翘曲明显.  相似文献   
6.
利用OM、XRD研究了常化工艺参数对热轧无取向硅钢板组织及织构的影响。结果表明:热轧硅钢常化后晶粒变大,变形带对常化过程组织形貌具有重要影响,常化后TD-RD面主要是等轴晶,晶界受常化温度影响较小,厚度方向较大的变形量使RD-ND和TD-ND面的晶界沿变形带方向分布,晶粒多为不规则形状;常化温度低于950℃时,随温度升高,残留的动态再结晶晶粒长大导致组织趋于均匀;温度超过1000℃时,在畸变的晶界上产生少量静态再结晶且原始晶粒异常长大,组织不均匀性增加,较短的常化时间对组织均匀性影响不大;常化处理为950℃保温5 min时,(110)面组分减小,晶粒取向性减弱,因此经过950℃保温5 min的常化处理的钢可以获得理想的组织,有利于后续的冷轧变形和组织调控。  相似文献   
7.
采用MMS-300多功能材料试验机对7075铝合金在变形温度300-450℃、应变速率0.01~40s^-1下单道次压缩过程进行了实验研究,并根据其流变曲线对热压缩过程进行了数值模拟,分析了变形速度、温度和摩擦对变形栽荷的影响规律。结果表明:7075铝合金变形过程发生了动态再结晶,应力-应变曲线表现出波浪形,波动周期大致相同,振幅随着应变增加逐渐减小;变形速度较小时,变形速度增加,临界应变增加,变形速度增加到一定程度时临界应变反而降低。随着变形速率增加和变形温度降低,载荷增加,而摩擦对7075铝合金热压缩过程的栽荷影响不大;当变形速率增加到一定值时,载荷值对速度敏感度降低。  相似文献   
8.
9.
采用大型商用有限元软件ANSYS对等通道转角挤压(Equal Channel Angular Pressing, ECAP)过程进行数值模拟,得到了ECAP变形过程中的等效应变和等效应力分布规律,分析了摩擦对ECAP变形的影响.结果表明,当模具转角φ=90°、ψ=0°时,与无摩擦情况相比,摩擦的存在使与模具接触的试样底部金属发生较大的变形,使等效应变和等效应力分布不均;最大等效应变主要分布在试样的底部,最大等效应力主要分布在转角处且比无摩擦时的分布区域有所扩张.同时,无摩擦时,试样与模具外转角处产生"间隙";存在摩擦时,随着摩擦的增大这种"间隙"逐渐减小甚至会消失.  相似文献   
10.
利用电子试验机对热轧后Fe-3.3%Si钢开展了温度范围为250~700 ℃及应变速率为0.001~0.1 s-1的单向拉伸试验,并对其拉伸后断口形貌和微观组织进行了观测与分析。结果表明,随着变形温度的升高,抗拉强度显著降低,伸长率呈指数增加;变形温度较低时,材料发生明显的加工硬化,非均匀塑性变形阶段较短,温度升高至550 ℃时,材料发生了明显的动态回复和动态再结晶;拉伸速率较低时断口存在明显的韧窝,与低温时发生的剪切断裂相比,温度较高时,韧窝基本与拉伸方向一致,属于拉伸断裂;变形速率较高时,断口出现部分河流花样准解理断裂,解理面由表面到芯部逐渐分层,形成了解理台阶或撕裂棱,多层解理面之间存在部分韧窝;拉伸过程中芯部变形量大,组织主要表现为变形带,温度较低时,表面组织为被拉长的晶粒,变形温度较高时,表面有大量的等轴晶。研究结果对硅钢温变形组织性能控制及温轧工艺制定和优化具有重要理论意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号