首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   2篇
无线电   2篇
一般工业技术   1篇
  2014年   2篇
  2010年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
哈尔滨工程大学学生活动中心室内环境设计,主要依据塑造和谐的校园文化环境、营造怡人的内部交往空间、体现整体的绿色设计理念三个方面的原则.在本次设计中,利用简洁洗练的手法,创造了丰富的视觉效果:材料和技术的合理应用,使环境更为健康安全;自然生态元素的引入,使人与环境更加和谐.整个设计体现了人文关怀,运用了绿色设计理念,塑造了富有现代气息的文化空间.  相似文献   
2.
The influences of the main structure and physical parameters of the dual-gate GeOl MOSFET on the device performance are investigated by using a TCAD 2D device simulator. A reasonable value range of germanium (Ge) channel thickness, doping concentration, gate oxide thickness and permittivity is determined by analyzing the on-state current, off-state current, short channel effect (SCE) and drain-induced barrier lowering (DIBL) effect of the GeOI MOSFET. When the channel thickness and its doping concentration are 10-18 nm and (5-9)×1017 cm-3, and the equivalent oxide thickness and permittivity of the gate dielectric are 0.8-1 nm and 15-30, respectively, excellent device performances of the small-scaled GeOI MOSFET can be achieved: on-state current of larger than 1475 μA/μm, off-state current of smaller than 0.1μA/μm, SCE-induced threshold-voltage drift of lower than 60 mV and DIBL-induced threshold-voltage drift of lower than 140 mV.  相似文献   
3.
The impact of quantum confinement on the electrical characteristics of ultrathin-channel GeO1 n- MOSFETs is investigated on the basis of the density-gradient model in TCAD software. The effects of the channel thickness (Tch) and back-gate bias (Vbg) on the electrical characteristics of GeOI MOSFETs are examined, and the simulated results are compared with those using the conventional semi-classical model. It is shown that when T~h 〉 8 rim, the electron conduction path of the GeOI MOSFET is closer to the front-gate interface under the QC model than under the CL model, and vice versa when Tch 〈 8 rim. Thus the electrically controlled ability of the front gate of the devices is influenced by the quantum effect. In addition, the quantum-mechanical mechanism will enhance the drain-induced barrier lowering effect, increase the threshold voltage and decrease the on-state current; for a short channel length (≤ 30 nm), when Tch 〉 8 nm (or 〈 8 nm), the quantum-mechanical mechanism mainly impacts the subthreshold slope (or the threshold voltage). Due to the quantum-size effect, the off-state current can be suppressed as the channel thickness decreases.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号