首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   16篇
  国内免费   1篇
电工技术   6篇
化学工业   64篇
金属工艺   4篇
建筑科学   6篇
矿业工程   3篇
能源动力   8篇
轻工业   9篇
水利工程   1篇
石油天然气   3篇
无线电   31篇
一般工业技术   22篇
冶金工业   15篇
自动化技术   44篇
  2024年   1篇
  2023年   2篇
  2022年   5篇
  2021年   12篇
  2020年   9篇
  2019年   14篇
  2018年   12篇
  2017年   10篇
  2016年   12篇
  2015年   12篇
  2014年   23篇
  2013年   27篇
  2012年   13篇
  2011年   12篇
  2010年   9篇
  2009年   15篇
  2008年   3篇
  2007年   8篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1994年   1篇
  1989年   1篇
  1978年   1篇
排序方式: 共有216条查询结果,搜索用时 140 毫秒
1.
Metallurgical and Materials Transactions B - A two-phase Eulerian–Eulerian volume-averaged model is used to predict the formation of macrosegregation during the twin-roll casting of...  相似文献   
2.
Abdellah  W. M. 《Radiochemistry》2020,62(3):347-358
Radiochemistry - The study deals with separation of uranium, thorium, and yttrium with highest possible purity from El-Garaa El-Hamara sulfate leach liquor. From the latter, almost complete...  相似文献   
3.
Electrically charged cellular ferroelectrets can show excellent thermally stable piezoelectric activity and are therefore progressively used in electrochemical transducers. Given that an optimized cellular structure is a key for improving charge density and the associated piezoelectric properties in this material, we investigated the influence of CO2 inflation treatment using various gas diffusion expansion or inflation procedures on the piezoelectric d33 coefficient and thermal stability of cellular poly(vinylidene) ferroelectrets and compare with the results (partially) obtained by N2 inflation as reported in our previous study (Jahan, Mighri, Rodrigue, Ajji, J. Appl. Polym. Sci. 2019, 136, 47540). Samples were prepared using the conventional extrusion–stretching–inflation–corona charging method. Maximum d33 coefficient for CO2-inflated samples is found to be around 30% higher than that of N2-inflated samples (327 pC/N compared to 251 pC/N) by stepwise pressure application method. The key parameters addressed in the inflation procedures are the changes in sample thickness, morphology, and the void-height distribution in both gas treatments. The ferroelectrets show excellent thermal stability for up to 4 days at 90, 110, and 120 °C in both treatments with a slightly improved performance in CO2 gas. The higher activation energy of CO2-inflated samples (0.52 eV) than the N2-inflated ones (0.43 eV) further confirms the stability data. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47929.  相似文献   
4.
The objective of this study is to develop a new biocomposite material with high deformation ability. In this regard, the thermal, rheological, and thermophysical properties of this new composite were characterized as a function of temperature and filler concentration. High density polyethylene (HDPE) was the matrix of this new composite which was reinforced with six sawdust concentrations 0%, 20%, 30%, 40%, 50%, and 60%. Maleic anhydride grafted polyethylene (PE‐g‐MA) was used as coupling agent. Addition of sawdust with PE‐g‐MA increased significantly the complex viscosity, the storage modulus (G′), and loss modulus (G″) of the matrix. The superposition of the complex viscosity curves using temperature dependent shift factor, allowed the construction of a viscosity master curve covering a wide range of temperatures. Arrhenius law was used for the relationship of the shift factor to temperature. Furthermore, method of Van Gurp and Palmen (tan delta vs. G*) is also used to control the time–temperature superposition. The experimental results can be well fitted with the cross rheological model which allowed the prediction of the thermorheological properties of the composites over a broad frequency range. By increasing wood concentration, both the activation energy and relaxation time for the biocomposites determined using, respectively, the Arrhenius law and the cole–cole rule increased. By contrast, specific heat of the matrix decreased with sawdust addition while its dimensional stability improved. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40495.  相似文献   
5.
Nanocomposites based on isotactic polypropylene (iPP) and titanium dioxide (TiO2) nanoparticle containing 1–15 vol% (4.6–45.5 wt%) of the nanoparticle were prepared by the melt blending process. The effect of an anhydride‐modified polypropylene as a compatibilizer on dispersion of TiO2 nanoparticles was assessed using SEM. TGA and DSC analysis were performed to study the thermal properties of the nanocomposites. Crystalline structures of iPP in the presence of TiO2 were analyzed by XRD. Mechanical properties of the nanoparticles were measured and a micromechanical analysis was applied to quantify interface interaction between the polymer and particle. SEM results revealed improvement of TiO2 particle dispersion by adding the compatibilizer. It was shown that the thermal stability and crystalline structure of the nanocomposite are significantly affected by the state of particle dispersion. TiO2 nanoparticles were shown to be strong β‐nucleating agents for iPP, especially at concentrations less than 5 vol%. Presence of the β‐structure crystals reduced the elastic modulus and yield strength of the nanocomposites. Micromechanical analysis showed enhanced interaction between organic and inorganic phases of the compatibilized nanocomposites. POLYM. ENG. SCI., 54:874–886, 2014. © 2013 Society of Plastics Engineers  相似文献   
6.
In this study, rheological, crystal structure, barrier, and mechanical properties of polyamide 6 (PA6), poly(m‐xylene adipamide) (MXD6) and their in situ polymerized nanocomposites with 4 wt % clay were studied. The extent of intercalation and exfoliation as well as type of crystals, crystallinity, and thermal transitions were investigated using X‐ray diffraction (XRD) and differential scanning calorimetry (DSC), respectively. Dynamic rheological measurements revealed that incorporation of nanoclay significantly increases complex viscosity of MXD6 nanocomposites at low frequencies, which was related to the formation of a nanoclay network and exchange reaction between MXD6 chains. The comparative study of dynamic characteristics (G′ (ω) and G″ (ω)) for aliphatic and aromatic polyamide nanocomposites with their neat resins as well as the relaxation spectra for both polymer systems confirmed the possibility of the aforementioned phenomena. Although, the crystallinity of MXD6 films was lower as compared to PA6 films, the permeability to oxygen was more than 5 times better for the former. Incorporating 4 wt% clay enhanced the barrier property, tensile modulus, and yield stress of PA6 and MXD6 nanocomposite films in both machine and transverse directions without sacrificing much puncture and tear resistances. The PA6‐based films showed higher tear and puncture strength as compared to MXD6 films. POLYM. ENG. SCI., 54:2617–2631, 2014. © 2013 Society of Plastics Engineers  相似文献   
7.
8.
In the human body, the black‐brown biopigment eumelanin blocks harmful ultraviolet (UV) radiation. In the plastics industry, additives are often added to polymers to increase their UV‐absorption properties. We herein report an assessment of the biopigment eumelanin as a nature‐inspired additive for plastics to enhance their UV absorption. Since eumelanin is produced by natural sources and is nontoxic, it is an interesting candidate in the field of sustainable plastic additives. In this work, the eumelanin‐containing films of commercial ethylene–vinyl acetate copolymer, a plastic used for packaging applications, were obtained by melt compounding and compression molding. The biopigment dispersion in the films was improved by means of the melanin free acid treatment. It was observed that eumelanin amounts as low as 0.8 wt% caused an increase of the UV absorption, up to one order of magnitude in the UVA range. We also evaluated the effect of eumelanin on the thermal stability and photostability of the films: the biopigment proved to be double‐edged, working both as UV‐absorption enhancer and photo‐prooxidant, as thermogravimetric analysis and infrared spectroscopy revealed. © 2019 Society of Chemical Industry  相似文献   
9.
The enormous services obtainable by bank and postal systems are not 100 % guaranteed due to variability of handwriting styles. Various methods based on neural networks have been suggested to address this issue. Unfortunately, they often fall into local optima that arises from the use of old learning methods. Global optimization methods provided new directions for neural networks evolution that may be useful in recognition. This paper develops efficient algorithms that compute globally optimal solutions by exploiting the benefits of both swarm intelligence and neuro-evolution in a way to improve the overall performance of a character recognition system. Various adaptations implied to both MLP and RBF networks have been suggested namely: particle swarm optimization (PSO) and the bees algorithm (BA) for characters classification, MLP training or RBF design by co-evolution and effective combinations of MLPs, RBFs or SVMs as an attempt to overcome the drawbacks of old recognition methods. Results proved that networks combination proposals ensure the highest improvement compared to either standard MLP and RBF networks, the co-evolutionary alternatives or other classifiers combination based on common combination rules namely majority voting, the fusion rules of min, max, sum, average, product and Bayes, Decision template and the Behavior Knowledge Space (BKS).  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号