首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   9篇
电工技术   1篇
化学工业   15篇
金属工艺   5篇
机械仪表   3篇
建筑科学   4篇
能源动力   3篇
轻工业   9篇
水利工程   1篇
无线电   6篇
一般工业技术   13篇
冶金工业   12篇
自动化技术   29篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   4篇
  2016年   4篇
  2015年   4篇
  2014年   1篇
  2013年   8篇
  2012年   8篇
  2011年   7篇
  2010年   10篇
  2009年   7篇
  2008年   7篇
  2007年   6篇
  2006年   4篇
  2004年   4篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1992年   1篇
  1988年   1篇
  1974年   1篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
1.
Papamichalis  P. Simar  R.  Jr. 《Micro, IEEE》1988,8(6):13-29
The 320C30 is a fast processor with a large memory space and floating-point-arithmetic capabilities. The authors describe the 320C30 architecture in detail, discussing both the internal organization of the device and the external interfaces. They also explain the pipeline structure, addressing software-related issues and constructs, and examine the development tools and support. Finally, they present examples of applications. Some of the major features of the 320C30 are: a 60-ns cycle time that results in execution of over 16 million instructions per second (MIPS) and over 33 million floating-point operations per second (Mflops); 32-bit data buses and 24-bit address buses for a 16M-word overall memory space; dual-access, 4 K×32-bit on-chip ROM and 2 K×32-bit on-chip RAM; a 64×32-bit program cache; a 32-bit integer/40-bit floating-point multiplier and ALU; eight extended-precision registers, eight auxiliary registers, and 23 control and status registers; generally single-cycle instructions; integer, floating-point, and logical operation; two- and three-operand instructions; an on-chip DMA controller; and fabrication in 1-μm CMOS technology and packaging in a 180-pin package. These facilitate FIR (finite impulse response) and IIR (infinite impulse response) filtering, telecommunications and speech applications, and graphics and image processing applications  相似文献   
2.
3.
Object manipulation is a challenging task for robotics, as the physics involved in object interaction is complex and hard to express analytically. Here we introduce a modular approach for learning a manipulation strategy from human demonstration. Firstly we record a human performing a task that requires an adaptive control strategy in different conditions, i.e. different task contexts. We then perform modular decomposition of the control strategy, using phases of the recorded actions to guide segmentation. Each module represents a part of the strategy, encoded as a pair of forward and inverse models. All modules contribute to the final control policy; their recommendations are integrated via a system of weighting based on their own estimated error in the current task context. We validate our approach by demonstrating it, both in a simulation for clarity, and on a real robot platform to demonstrate robustness and capacity to generalise. The robot task is opening bottle caps. We show that our approach can modularize an adaptive control strategy and generate appropriate motor commands for the robot to accomplish the complete task, even for novel bottles.  相似文献   
4.
A 3D stereoscopic head‐up display using a tunable bandpass filter to perform left and right image spectral separation is presented. Using a single filter reduces the size and the cost of the head‐up display optical engine and enables each spectral band to be accurately tuned. Experiments performed on the first prototype demonstrate the ability to continuously tune the bandpass frequency on 30‐nm range while keeping a 20‐nm bandwidth. Such a system avoids the use of a bulky and costly rotating wheel and enables the use of holographic optical elements known to be wavelength selective.  相似文献   
5.
In the context of object interaction and manipulation, one characteristic of a robust grasp is its ability to comply with external perturbations applied to the grasped object while still maintaining the grasp. In this work, we introduce an approach for grasp adaptation which learns a statistical model to adapt hand posture solely based on the perceived contact between the object and fingers. Using a multi-step learning procedure, the model dataset is built by first demonstrating an initial hand posture, which is then physically corrected by a human teacher pressing on the fingertips, exploiting compliance in the robot hand. The learner then replays the resulting sequence of hand postures, to generate a dataset of posture-contact pairs that are not influenced by the touch of the teacher. A key feature of this work is that the learned model may be further refined by repeating the correction-replay steps. Alternatively, the model may be reused in the development of new models, characterized by the contact signatures of a different object. Our approach is empirically validated on the iCub robot. We demonstrate grasp adaptation in response to changes in contact, and show successful model reuse and improved adaptation with additional rounds of model refinement.  相似文献   
6.
Performing manipulation tasks interactively in real environments requires a high degree of accuracy and stability. At the same time, when one cannot assume a fully deterministic and static environment, one must endow the robot with the ability to react rapidly to sudden changes in the environment. These considerations make the task of reach and grasp difficult to deal with. We follow a Programming by Demonstration (PbD) approach to the problem and take inspiration from the way humans adapt their reach and grasp motions when perturbed. This is in sharp contrast to previous work in PbD that uses unperturbed motions for training the system and then applies perturbation solely during the testing phase. In this work, we record the kinematics of arm and fingers of human subjects during unperturbed and perturbed reach and grasp motions. In the perturbed demonstrations, the target’s location is changed suddenly after the onset of the motion. Data show a strong coupling between the hand transport and finger motions. We hypothesize that this coupling enables the subject to seamlessly and rapidly adapt the finger motion in coordination with the hand posture. To endow our robot with this competence, we develop a coupled dynamical system based controller, whereby two dynamical systems driving the hand and finger motions are coupled. This offers a compact encoding for reach-to-grasp motions that ensures fast adaptation with zero latency for re-planning. We show in simulation and on the real iCub robot that this coupling ensures smooth and “human-like” motions. We demonstrate the performance of our model under spatial, temporal and grasp type perturbations which show that reaching the target with coordinated hand–arm motion is necessary for the success of the task.  相似文献   
7.
Mitochondria are involved in many cellular pathways and dysfunctional mitochondria are linked to various diseases. Hence efforts have been made to design mitochondria-targeted fluorophores for monitoring the mitochondrial status. However, the factors that govern the mitochondria-targeted potential of dyes are not well-understood. In this context, we synthesized analogues of the TP-2Bzim probe belonging to the vinyltriphenylamine (TPA) class and already described for its capacity to bind nuclear DNA in fixed cells and mitochondria in live cells. These analogues ( TP-1Bzim, TPn-2Bzim, TP1+-2Bzim, TN-2Bzim ) differ in the cationic charge, the number of vinylbenzimidazolium branches and the nature of the triaryl core. Using microscopy, we demonstrated that the cationic derivatives accumulate in mitochondria but do not reach mtDNA. Under depolarisation of the mitochondrial membrane, TP-2Bzim and TP1+-2Bzim translocate to the nucleus in direct correlation with their strong DNA affinity. This reversible phenomenon emphasizes that these probes can be used to monitor ΔΨm variations.  相似文献   
8.
A high density of voids is expected to form in irradiated face centered cubic metals, which can have a negative impact on the ductility and cause an increasing strength. Molecular dynamics simulations of the interaction between gliding dissociated edge dislocations and voids in nickel have been performed to investigate the effect of the void size, the corresponding detachment mechanism, and dynamic effects of the dislocation on the obstacle strength. As expected, the void strength is observed to increase with increasing void size. The dislocation interaction and detachment process are determined by the applied shear stress, the repulsive interaction between partial dislocations and the image interaction between the partial dislocations and the void surface. For voids with a diameter smaller than 2 nm, the repulsive stress between the partials dominates, resulting in the detachment of the leading partial from the void while the trailing partial remains pinned. Consequently, the detachment process and obstacle strength are controlled by the trailing partial. For voids with a diameter larger than 2 nm, the attraction between the dissociated dislocations and the void dominates causing the detachment process and void strength to be influenced by both partials individually. This transition in detachment process at a void diameter of 2 nm is consistent with other research, and this transition is shown to be dependent on the void separation distance along the dislocation line and the dissociation distance between the partials, thus the stacking fault energy. Finally, by comparing the quasi-static and dynamic simulation results, an estimate for the static detachment stress is proposed in terms of the dynamic detachment stress and the dislocation velocity after detachment.  相似文献   
9.
Objective: To examine the efficacy of a developmentally appropriate parent–child cognitive behavioral therapy (CBT) protocol for anxiety disorders in children ages 4–7 years. Method: Design: Randomized wait-list controlled trial. Conduct: Sixty-four children (53% female, mean age 5.4 years, 80% European American) with anxiety disorders were randomized to a parent–child CBT intervention (n = 34) or a 6-month wait-list condition (n = 30). Children were assessed by interviewers blind to treatment assignment, using structured diagnostic interviews with parents, laboratory assessments of behavioral inhibition, and parent questionnaires. Analysis: Chi-square analyses of outcome rates and linear and ordinal regression of repeated measures, examining time by intervention interactions. Results: The response rate (much or very much improved on the Clinical Global Impression Scale for Anxiety) among 57 completers was 69% versus 32% (CBT vs. controls), p  相似文献   
10.
The Z-value is an attempt to estimate the statistical significance of a Smith-Waterman dynamic alignment score (SW-score) through the use of a Monte-Carlo process. It partly reduces the bias induced by the composition and length of the sequences. This paper is not a theoretical study on the distribution of SW-scores and Z-values. Rather, it presents a statistical analysis of Z-values on large datasets of protein sequences, leading to a law of probability that the experimental Z-values follow. First, we determine the relationships between the computed Z-value, an estimation of its variance and the number of randomizations in the Monte-Carlo process. Then, we illustrate that Z-values are less correlated to sequence lengths than SW-scores. Then we show that pairwise alignments, performed on 'quasi-real' sequences (i.e., randomly shuffled sequences of the same length and amino acid composition as the real ones) lead to Z-value distributions that statistically fit the extreme value distribution, more precisely the Gumbel distribution (global EVD, Extreme Value Distribution). However, for real protein sequences, we observe an over-representation of high Z-values. We determine first a cutoff value which separates these overestimated Z-values from those which follow the global EVD. We then show that the interesting part of the tail of distribution of Z-values can be approximated by another EVD (i.e., an EVD which differs from the global EVD) or by a Pareto law. This has been confirmed for all proteins analysed so far, whether extracted from individual genomes, or from the ensemble of five complete microbial genomes comprising altogether 16956 protein sequences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号