首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
  国内免费   1篇
化学工业   8篇
无线电   1篇
一般工业技术   8篇
  2017年   1篇
  2016年   5篇
  2015年   1篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2009年   2篇
  2005年   1篇
排序方式: 共有17条查询结果,搜索用时 31 毫秒
1.
Nonwoven nanofiber mats of polyvinylidene fluoride (PVDF) with modified layered double hydroxide (MLDH) were prepared by electrospinning. The fiber morphology was studied using scanning electron microscopy. X‐ray diffraction and FTIR spectroscopy was used to characterize the polymorphism in electrospun mats. Fibers of diameter in the range 80–800 nm with beads of about 2–3 µm size were observed for pure PVDF, while in case of PVDF/MLDH nanocomposites the number and size of beads were found to be significantly reduced. Uniform and fine nanofibers were obtained at lower content of MLDH, but slightly rough surface was seen for higher content. FTIR and X‐ray diffraction patterns signify various crystalline forms of electrospun PVDF. The content of polar β‐crystalline phase of PVDF, which exhibit piezo and ferroelectric properties was found to be enhanced significantly due to reinforcement of MLDH. Use of these nanofiber mats for heavy metal Cu (II) removal was explored. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4508–4515, 2013  相似文献   
2.
Nano-Micro Letters - A facile and rapid method to synthesize graphene/layered double hydroxide (LDH) nanohybrids by a microwave technique is demonstrated. The synthesis procedure involves...  相似文献   
3.
This study investigates the behavior of Pb(1?z)Laz (NiSb)0.05 [(Zr0.52 Ti0.48)1?Z/4]0.95O3 (La-PNS-PZT) ceramics where z = 0.01–0.05 in response to cyclic electrical loading. Samples were fabricated by mixed oxide route and subjected to electrical stress by applying the electric load of 1,500 V, along the polar axis, with fatigue amplitudes of 20 V. Impedance and resonance frequency response was studied after every 106 cycles. Degradation in electromechanical coupling factor (kp), piezoelectric strain constant (d33) and dielectric constant ( $ K_{3}^{T} $ ) were also studied and correlated with structural properties. Results revealed that the La-PNS-PZT composition containing 3 mol% of lanthanum could be more suitable for actuator applications since it shows minimum degradation in properties after 1012 cycles of electric load.  相似文献   
4.
A new diol‐functionalized triazine‐based polymerizable hindered amine light stabilizer (HALS) was synthesized in two steps. First, selective synthesis of an s‐triazine containing two HALS moieties as substituents was accomplished by using phase‐transfer catalysis. This step required the establishment of optimum reaction conditions (type of two‐phase system, best solvent, and catalyst). In the second step, the substituted triazine was treated with diethanolamine to introduce polymerizable diol functionality. The resulting product should act as a light stabilizer, since it contains two HALS moieties anchored to a thermally stable s‐triazine unit. Moreover, incorporation of the diol into a polymeric material might be expected to impart prolonged stability in weathering environments. Characterization of the diol was accomplished by using Fourier transform infrared spectroscopy (FTIR), 'H NMR, and mass spectrometry. J. VINYL ADDIT. TECHNOL., 18:204–208, 2012. © 2012 Society of Plastics Engineers  相似文献   
5.
In this work, we have studied the influence of substrate temperature on structural, morphology optical, and electrical properties of CdTe thin films deposited by RF magnetron sputtering. Films were analyzed by using variety of techniques such as low angle X-ray Diffraction, UV–Visible spectroscopy, Raman spectroscopy, Field emission scanning electron microscopy (FE-SEM), Energy-dispersive X-ray spectroscopy (EDAX) Hall Measurement etc. Low angle XRD analysis showed that CdTe films are polycrystalline and has cubic structure with preferred orientation is along (111) direction. Raman scattering studies revealed the presence of single phase CdTe over the entire range of substrate temperature studied. The FE-SEM analysis showed that CdTe growth process occurred predominantly by grain growth and not through the layer-by-layer mode. Compositional analysis carried out using EDAX suggests that CdTe films deposited at low substrate temperatures are Te rich and that at higher temperatures is Cd rich. Electrical resistivity of CdTe films decreases with increase in substrate temperature and whereas positive increase in Hall coefficient suggests as-deposited CdTe films are p-type. The UV–Visible spectroscopy analysis showed that the band gap increases from 1.47 to 1.51 eV when the substrate temperature increased from 50 to 300 °C. Such optimum band gap CdTe can be use as absorber material in photovoltaic applications like the CdS/CdTe and ZnO/CdTe solar cells.  相似文献   
6.
We have successfully grown template and buffer free ZnO nanorod films via chloride medium by controlling bath temperature in a simple and cost effective electrochemical deposition method. Thin films of ZnO nano-rods were obtained by applying a potential of ?0.75 V by employing Ag/AgCl reference electrode for 4 h of deposition time. The CV measurements were carried out to determine potential required to deposit ZnO nanorod films whereas chronoamperometry studies were carried out to investigate current and time required to deposit ZnO nanorod films. The formation of ZnO nanorod has been confirmed by scanning electron microscopy (SEM) and Raman spectroscopy. Low angle XRD analysis confirms that ZnO nanorod films have preferred orientation along (101) direction with hexagonal wurtzite crystal structure. The SEM micrographs show nice surface morphology with uniform, dense and highly crystalline hexagonal ZnO nanorods formation. Bath temperature has a little influence on the orientation of nanorods but has a great impact on their aspect ratio. Increase in bath temperature show improvement in crystallinity, increase in diameter and uniform distribution of nanorods. Compositional analysis shows that the amount of oxygen is ~49.35 % and that of Zn is ~50.65 %. The optical band gap values were found to be 3.19 and 3.26 eV for ZnO nanorods prepared at bath temperature 70 and 80 °C respectively. These results indicate that by controlling the bath temperature band gap of ZnO nanorods can be tailored. The obtained results suggest that it is possible to synthesize ZnO nanorod films by a simple, cost effective electrodeposition process which can be useful for opto-electronic devices fabrication.  相似文献   
7.
Influence of filament temperature (TFil) on the structural, morphology, optical and electrical properties of silicon carbide (SiC) films deposited by using hot wire chemical vapor deposition technique has been investigated. Characterization of these films by low angle XRD, Raman scattering, XPS and TEM revealed the multiphase structure SiC films consisting of 3C–SiC and graphide oxide embedded in amorphous matrix. FTIR spectroscopy analysis show an increase in Si–C, Si–H, and C–H bond densities and decrease in hydrogen content with increase in TFil. The C–H bond density was found higher than the of Si–H and Si–C bond densities suggesting that H preferably get attached to C than Si. AFM investigations show decrease in rms surface roughness and grain size with increase in TFil. SEM studies show that films deposited at low TFil has spherulites-like morphology while at high TFil has cauliflower-like structure. Band gap values ETauc and E04 increases from 1.76 to 2.10 eV and from 1.80 to 2.21 eV respectively, when TFil was increased from 1500 to 2000 °C. These result show increase in band tail width (E04–ETauc) of multiphase SiC films. Electrical properties revealed that σDark increases from ~7.87 × 10?10 to 1.54 × 10?5 S/cm and Eact decreases from 0.67 to 0.41 eV, which implies possible increase in unintentional doping of oxygen or nitrogen due to improved crystallinity and Si–C bond density with increase in TFil. The deposition rate for the films was found moderately high (21 < rdep < 30 Å/s) over the entire range of TFil studied.  相似文献   
8.
We here present a way of preparing the polymer:fullerene BHJ using dual feed method which can lead to formation of pure phases. In this report, we present results of our initial experiments in this direction. The effect of process parameters on the thickness and surface roughness of the active layer has been discussed. The structural and optical properties have been studied using the optical microscope, UV-visible spectroscopy and photoluminescence spectroscopy. Significant PL quenching indicates efficient charge separation in the BHJ formed using this technique. We have also compared the BHJ thin films prepared with this dual feed ultrasonic technique with the single feed spray method. The BHJ formed using this technique has been used as an active layer in OSC.  相似文献   
9.
Polypropylene (PP)/layered double hydroxide (LDH) nanocomposites were prepared by the direct melt intercalation method using maleic anhydride grafted polypropylene (PP‐g‐MAH) as a reactive compatibilizer. The compatibilization effects provided by PP‐g‐MAH in different weight fractions and their influence on the structure and properties of the final nanocomposites were investigated. The interactions and structural morphology of the nanocomposites were examined by Fourier transform infrared spectroscopy, X‐ray diffraction and transmission electron microscopy. Thermal, mechanical and rheological properties of these nanocomposites were investigated as a function of compatibilizer concentration. The detailed morphological and X‐ray diffraction results revealed that the degree of LDH dispersion increases as the amount of PP‐g‐MAH increases. Study of the linear viscoelastic properties showed that the storage modulus G′ is very sensitive to the microstructure of the nanocomposite. The thermal properties of the nanocomposites were significantly influenced by the weight fraction of PP‐g‐MAH due to the shielding and nucleating effect of exfoliated layers. Both the tensile strength and modulus showed substantial improvements with increasing PP‐g‐MAH content, while the elongation at break substantially decreased, although the presence of PP‐g‐MAH somewhat improves these values. The overall results showed that 10 wt% of compatibilizer is optimum to achieve nanocomposites with better performance. Copyright © 2011 Society of Chemical Industry  相似文献   
10.
Piezoceramic compositions [Pb(Ni1/3Sb2/3)]0.02-[Pb(Zr1−yTiy)]0.98O3 with y = 0.46-0.50 were synthesized by solid state route to study the effect of Zr/Ti ratio on crystal structure, microstructure, piezoelectric and dielectric properties. Calcination was performed at 1060 °C. The specimens were sintered at 1280 °C for 1 h. X-ray diffraction studies indicate the co-existence of tetragonal and rhombohedral perovskite phases in these compositions. Microstructural analysis showed the dense and uniform microstructure for [Pb(Ni1/3Sb2/3)]0.02-[Pb(Zr0.52Ti0.48)]0.98O3. This composition was resulted in optimum values of properties viz. charge constant (d33 = 301 × 10−12 C/N), voltage constant (g33 = 33.7 × 10−3 V m/N), product of piezoelectric charge constant and voltage constant (d33 × g33 = 10.12 × 10−12 C V m/N2) and coupling factor (kp = 0.63). Results indicated that this material composition could be suitable for power harvesting and sensor applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号