首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
一般工业技术   3篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
In this present study cyclodextrin (CD)–poloxamer aggregates were characterized and developed as ophthalmic drug carriers. The combined effect of γCD/2-hydroxypropyl-γCD (HPγCD) mixtures and poloxamer on solubilization and permeability of two model drugs, dexamethasone (Dex) and amphotericin B (AmB), was investigated. The CD–poloxamer interaction and complex aggregation were examined by 1H nuclear magnetic resonance (1H-NMR), their solubilizing ability by high-performance liquid chromatography, and their particle size determined by dynamic light scattering and transmission electron microscopy. Formulations containing either 1.5% w/v Dex or 0.15% w/v AmB in eye drop suspensions containing various γCD/HPγCD ratios and poloxamer 407 (P407) were prepared. The solubility of the drugs, surface tension and hemolytic effect of the eye drops and drug permeation from selected formulations were determined. The 1H-NMR study showed that P407 formed inclusion complex with CDs by inserting its poly(propylene oxide) segment into the CD cavity. P407 and γCD interacted with each other to form nanosized aggregates, and the observed concentration of dissolved γCD and P407 progressively decreased with increasing γCD and P407 concentrations. Including a high proportion of HPγCD improved the drug solubilization and reduced the hemolytic effect. The surface tension of the formulations decreased with increasing P407 concentration. Furthermore, increasing P407 content in the formulations enhanced formation of complex aggregates with consequent slower drug release. It was concluded that the drug/γCD/HPγCD complex was stabilized by P407 through formation of multi-component aggregates. Thus, CD–poloxamer aggregates are self-assembled nanocarriers from which drug delivery characteristics can be adjusted by changing the γCD/HPγCD/P407 ratios.  相似文献   
2.
Amphotericin B (AmB) is one of the most effective systemic antifungal agents, but its use is circumscribed by the dose-limiting toxicity of the conventional micellar dispersion formulation, Fungizone®. Significantly lesser toxicity is obtained when AmB incorporated into the aqueous dispersion of lipid nanoparticles. The aim of this study was to develop and characterize AmB loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs). NLC differed from SLN by the presence of liquid lipid, glyceryl tri(caprylate/caprate) in the lipid matrix. Various surfactants i.e. tween 20, cremophor RH40, poloxamer 407 (P407) and Myrj 52 were used to stabilize SLN and NLC. The effect of phospholipid incorporated in those lipid dispersions was also determined. Among surfactants tested, only P407 could stabilize AmB lipid dispersions. There was no chemical reaction occurred between AmB and other components that confirmed by Fourier transform infrared spectroscopy (FT-IR) spectra. The differential scanning calorimetry (DSC), hot-stage microscopy (HSM), powder X-ray diffractometry (PXRD) data showed that AmB was molecularly dispersed or in amorphous form in the lipid matrix. The proton nuclear magnetic resonance (1H-NMR) results showed that in the presence of phospholipid oil clusters within the lipid matrix are formed. These results indicate that SLN and NLC stabilized by P407 and/or phospholipid as the colloidal carrier for AmB were successfully developed.  相似文献   
3.
The aim of this study was to further investigate the effect of drug loading, drug entrapment efficiency, the drug release profiles and biopharmaceutical point of views of amphotericin B (AmB) lipid formulations, that is, degree of aggregation by UV-spectroscopy, in vitro hemolytic and antifungal activities. The optimum drug loading was 2.5% by weight corresponded to lipid fraction in formulation. Increasing of the drug entrapment was achieved by blending small amount of phospholipid in solid lipid nanoparticle (SLN) dispersions. All AmB lipid dispersions were less aggregated species and hemolytic response than Fungizone® indicating that lipid nanoparticles could reduce its toxicity. The sustained release profiles of AmB formulations depended on its aggregated form and entrapment efficiency. Too high AmB loaded (5% w/w) showed a biphasic drug release profile probably due to some amounts of drug deposited on the nanosphere surface including in continuous phase which promptly released. For in vitro antifungal testing, all AmB lipid formulations were equal and more effective than both AmB itself and Fungizone®. These observations suggested that AmB loaded SLNs, nanostructured lipid carriers and modified SLNs by blending lecithin could enhance AmB solubility, prolong release characteristics, reduce toxicity and improve antifungal activity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号