首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   1篇
一般工业技术   1篇
  2019年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
Microbiologically influenced corrosion (MIC) is a big threat to the strength and safety of many metallic materials used in different environments throughout the world. The metabolites and bioactivity of the microorganisms cause severe deterioration on the metals. In this study, MIC of pure titanium (Ti) was studied in the presence of a highly corrosive aerobic marine bacterium Pseudomonas aeruginosa. The results obtained from electrochemical test showed that Ti was corrosion resistant in the abiotic culture medium after 14 d, while the increased corrosion current density (icorr) obtained from polarization curves and the decreased charge transfer resistance (Rct) from electrochemical impedance spectroscopy (EIS) indicated the accelerated corrosion of Ti caused by P. aeruginosa biofilm. For further confirmation of the above results, the surface of Ti was investigated using scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and X-ray photoelectron spectroscopy (XPS). According to the XPS results, TiO2 was formed in both abiotic and biotic conditions, while unstable oxide Ti2O3 was detected in the presence of P. aeruginosa, leading to the defects in the passive film and localized corrosion. Pitting corrosion was investigated with the help of CLSM, and the largest pit depth found on Ti surface immersed in P. aeruginosa was 1.2 μm. Ti was not immune to MIC caused by P. aeruginosa.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号