首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   2篇
化学工业   3篇
无线电   1篇
一般工业技术   7篇
冶金工业   1篇
  2019年   1篇
  2018年   3篇
  2013年   4篇
  2007年   1篇
  2003年   1篇
  2001年   1篇
  1993年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Laser generation and air-coupled detection were combined as a hybrid ultrasonic technique for the inspection of surface flaws in rails. Narrowband acoustic signals were generated using a formed laser source by focusing the laser light to a point and to a line on the surface of the rail. The pulse energy, and therefore the intensity of the laser source, varied such that the generated signal transitioned from the weak thermoelastic to the strong ablative regime. The detection of flaws using a laser-generated surface acoustic wave, in the presence of surface flaws, was compared between both point and line laser sources operating under different pulse energy levels. The line source was found to be more sensitive to the presence of surface flaws than a point source. The sensitivity of the laser-generated acoustic signal appeared to be independent of the severity of the flaw and, within the ablative regime, independent of the laser-pulse energy. Theoretical analysis is provided to explain the underlying cause that influences the interaction of a formed laser-generated surface acoustic wave to surface flaws and how this sensitivity may vary between the thermoelastic and ablative regimes.  相似文献   
2.
This study examines the influence of three different minerals, that is, clay, calcium carbonate, and quartz on the physical, thermal, and mechanical properties of poly(lactic acid) (PLA)/poly(methyl methacrylate) blend. Rheological behavior and phase structure were initially studied by small-amplitude oscillatory shear rheology. Clay- and quartz-filled materials presented an increase in viscosity at low frequency associated with the presence of a yield stress. However, this behavior was not observed for calcium carbonate filled materials due to a matrix degradation effect. To elucidate this aspect, thermal stability and thermal properties were examined by thermogravimetric analysis and differential scanning calorimetry, showing that calcium carbonate promotes degradation of the PLA phase. No nucleating effect was observed in the presence of the minerals. Dynamical mechanical analysis and mechanical characterization revealed an increase of the overall softening temperature and, a reinforcing effect for clay- and quartz-based composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46927.  相似文献   
3.
A metallurgical and root cause analysis was performed on hot induction bent pipes that exhibited cracking at the extrados. The bent pipe of 1016 mm (40 in.) diameter by 18.5 mm wall thickness was API 5L X65 PSL2 line pipe containing a longitudinal submerged arc weld. A metallurgical cross section was removed at a crack on the bent pipe extrados to document the crack morphology using optical microscopy. In addition to the cracking, golden-yellow streaks were visible at the extrados of the bent pipe. The composition of the streaks was examined using scanning electron microscopy with energy dispersive spectroscopy.  相似文献   
4.
An investigation was carried out to study the thickening kinetics of ferrite allotriomorph in a high-strength low-alloy (HSLA) steel containing Nb. Using optical microscopy to measure growth distance, it has been shown that the movement of the α/γ interface follows a parabolic relationship with the reaction time. By modelling the steel as a ternary Fe-C-Mn alloy, the growth rate constants, αe and αpara, were calculated assuming full equilibrium and paraequilibrium modes of transformation, respectively. The parabolic growth rate constant lies within an order of magnitude of the values for αpara up to about 1000 K with no partitioning of Mn. An abrupt decrease in the rate of growth of ferrite has been observed at higher temperatures. The parabolic growth rate constant at the highest temperature (1062 K) is about an order of magnitude higher than the value of αe indicating that equilibrium partitioning of Mn has occurred. Thus a change from no partitioning at lower temperatures to partial or full partitioning of Mn at higher temperatures describes the kinetics of ferrite transformation in this steel.  相似文献   
5.
Most theoretical and experimental work on surface waves does not take into account dispersion. When propagating along a flat planar half space, surface waves are known as Rayleigh waves and are not dispersive. When the radii of curvature are large, surface waves behave like Rayleigh waves. However, when the radii are small, dispersion becomes a contributing factor. Experimental measurements indicate that along with dispersion, there appears to be a strong phase shift effect as the wave propagates along the circumferential path of cylindrical specimens. The phase shift effect is observed even under conditions where dispersion is not detected. Classical theories provide the velocity-frequency equations, which represent the dispersion relationships, for surface waves. An alternate theoretical approach is discussed in this article that demonstrates the phase-dispersion relationship for cylindrical surface waves. Experimental data support the theoretical conclusions and indicate phase shift is directly related to the radius of curvature to an extent much more sensitive than dispersion.  相似文献   
6.
Memory metamaterials allowing persistent tuning of their unusual electromagnetic responses are an emerging group of artificial electromagnetic materials. Here, the memory metamaterial operating at microwave frequency based on the hybrid resonance of the metamaterial‐ferromagnetic system is reported. It is demonstrated that the hybrid resonance can be tuned reversibly as a function of frequency and amplitude of the input microwave signal. The principle underlying the persistent hybrid resonance tuning is the adaptive structural modification of the magnetic domain structure for the input microwave signal.  相似文献   
7.
The hydrolytic stability of polylactide/poly(methyl methacrylate) (PLA/PMMA) blends prepared using a twin‐screw extrusion process was investigated. The effects of hydrolysis were monitored in neutral and alkaline media at 80 °C by tracking the changes in molecular weight distribution, weight loss, water uptake, and crystallization behavior. The crystallinity of PLA in blends prior to hydrolysis was shown to be largely hindered by the presence of PMMA. However, PLA recrystallized rapidly during hydrolysis. The PMMA in the blends was shown to provide increased hydrolytic and structural stability to the blends. In the neutral medium, the presence of PMMA delayed and reduced the weight loss but did not significantly affect PLA degradation kinetics. On the other hand, in the alkaline medium, the weight loss rate was strongly decreased in presence of PMMA and the kinetics of degradation was shown to be depend on PMMA content. The microstructure of these blends throughout the hydrolysis process was also examined by scanning electron microscopy. A porous structure, with interconnected pores in the 20–50 nm range, was developed due to the selective removal of PLA. Based on these morphological observations, erosion mechanism of PLA/PMMA blends was discussed. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45991.  相似文献   
8.
This study examines the rheological, mechanical and thermal behavior of Poly(lactic acid)/Poly(methyl methacrylate) (PLA/PMMA) blends and takes a look at the phase structure evolution during their melt processing. Semi-crystalline or amorphous PLA grades were combined with PMMA of different molecular weight to prepare the blends. The rheological properties and phase structure was first assessed using small-amplitude oscillatory shear experiments. The blends were injection molded into bars and characterized in terms of their tensile properties and of their dynamic mechanical behavior. Differential scanning calorimetry was also used to study the miscibility and crystallization behavior of prepared blends. Tensile properties of the blends nearly followed a linear mixing rule with no detrimental effect that could have been associated with an uncompatibilized interface. However, dynamic mechanical analysis and calorimetric experiments showed that some phase separation was present in the molded parts. Nevertheless, a single Tg was found if sufficient time was given in quiescent conditions to achieve miscibility. The Gordon-Taylor equation was used to assess the polymer interactions, suggesting that miscibility is the thermodynamically stable state. The ability of PLA to crystallize was strongly restricted by the presence of PMMA and little or no crystallinity development was possible in the blends with more than 30% of PMMA. Results showed an interesting potential of these blends from an application point of view, whether they are phase separated or not.  相似文献   
9.
Abstract

Laser-based ultrasound and air-coupled ultrasound test methods were used for the inspection of flowed rail, internal, and surface-breaking cracks in railroad tracks. Signals were generated with an infrared pulse laser and detected with a micromachined capacitive air-coupled transducer. A comparison is presented between point source and line source laser-generated signals and their effectiveness in detecting surface flaws. The experiments demonstrate the flexibility and capability of a laser-air hybrid ultrasonic technique to detect cracks using test procedures that are not possible with current contact inspection techniques. The noncontact and remote nature of these methods renders such tests suitable for in-service applications.  相似文献   
10.
Long- and short-range acoustic-signal interaction with surface-breaking cracks and geometric boundaries of the rail-wheel tread area are presented in this article. Ultrasonic signals are generated using a laser-line source of varying length and distance from a crack and are detected with a 1-MHz contact transducer to map the sound field behind the crack in the near, intermediate, and far fields of the insonified region. The factors that affect the behavior of a laser-generated surface acoustic wave propagating along the tread area of a rail wheel are discussed. A signal normalization method is proposed to help in sensing the presence of a crack from the transmitted signal unaffected by the boundary effect of the complicated wheel geometry, diffraction of the acoustic wave around the crack tip, and source-to-crack length ratio and separation distance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号