首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   3篇
化学工业   23篇
能源动力   1篇
轻工业   9篇
无线电   3篇
一般工业技术   13篇
自动化技术   18篇
  2024年   2篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   7篇
  2012年   4篇
  2011年   6篇
  2010年   2篇
  2009年   3篇
  2008年   5篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  1997年   1篇
排序方式: 共有67条查询结果,搜索用时 15 毫秒
1.
2.
Stergios Topouris 《工程优选》2013,45(10):1710-1726
This article focuses on generating a monobloc fingered hub (top-hat) disc design, aiming at reducing disc mass but maintaining rotor thermal capacity, while also improving heat dissipation characteristics. The analyses and tests demonstrated that such a design is possible to achieve, with mass reduction of just over 9%. The activities included research into cast iron modelling, which gave very important insights into the limits of mechanical performance under bending. Initial finite element analyses enabled considerable progress to be made towards establishing a baseline design, but only through shape optimization and topology optimization procedures was the full potential of the design accomplished. Shape optimization facilitated the reduction of maximum principal stress by 32%, considerably improving disc torsional strength with practically no increase in mass. The safety factor in torsion achieved a value of 3.57. Topology optimization provided further, although small, mass reduction (1.5%) while maintaining low stress levels.  相似文献   
3.
A detailed study of pressure- and temperature-driven flows through long channels of triangular and trapezoidal cross sections is carried out. Due to the imposed pressure and temperature gradients there is a combined gas flow consisting of a thermal creep flow from the cold toward the hot reservoir and a Poiseuille flow from the high- toward the low-pressure reservoir. The formulation is based on the linearized Shakhov model subject to Maxwell boundary conditions, and it is solved numerically using a finite-difference scheme in the physical space and the discrete velocity method in the molecular velocity space. The results are valid in the whole range of the Knudsen number. In addition to the dimensionless flow rates, a methodology is presented to estimate for a certain set of input data the mass flow rates and the pressure distribution along the channel. Finally, special attention is given to the case of zero net mass flow and to the computation of the coefficient of the thermomolecular pressure difference.  相似文献   
4.
This article provides a framework for analyzing multifactor financial returns that violate the Gaussian distributional assumption. Analytical expressions are provided for the non-linear regression equation and its prediction error (heteroscedasticity) by modeling the returns of financial assets as scale mixtures of the multivariate normal distribution. The expressions involve conditional moments of the mixing variable. These conditional moments are explicitly derived when the mixing variable belongs to the generalized inverse Gaussian family, of which gamma, inverse gamma and the inverse Gaussian distributions are distinguished members. The derived expressions are non-linear in the parameters and involve the modified Bessel function of the third kind. The effects of the non-linear model, in terms of both the regression equation and heteroscedasticity against the corresponding values for the standard linear regression model, are captured through simulations for the gamma, inverse gamma and inverse Gaussian distributions. The proposed scale mixture models extend the well-known arbitrage pricing theory (APT) in financial modeling to non-Gaussian cases. The methodology is applied to analyze the intra-day log returns quarterly data for DELL and COKE regressed against S&P 500 for the years 1998-2000.  相似文献   
5.
Tissue engineering is a promising interdisciplinary scientific field of regenerative medicine. Aiming at the structural and functional restoration of damaged tissues and organs, it possesses a role of significant socioeconomical impact. In the course towards the ultimate goal of artificially constructed natural organs, our knowledge of the elementary constitutive components of living organisms and the intrinsic mechanisms that drive their interactions is greatly enhanced. Bioreactors are valuable tools providing the technological means to investigate fundamental issues for basic research and to improve tissue‐engineering products for clinical applications. They are devices enabling the in vitro simulation of the in vivo biological, physical and mechanical environment of growing tissues. In this review paper, we discuss the general demands defining the design considerations for modern bioreactor systems. These criteria originate from physiological characteristics of the cells and biochemical and mechanical properties of the extracellular matrix (ECM). In this context, we present an overview of the various bioreactor systems dedicated to the study of specific functional tissues developed by numerous research groups.  相似文献   
6.
Titanium diboride (TiB2), is a widely used hard material that comprises graphene-like layers of B and intercalated Ti atoms. Here we report the results of extensive first-principles calculations on key properties of bulk TiB2, TiB2 surfaces, and TiB2 nanocrystals (NCs). The computational approach is first validated based on the agreement between calculated structural and electronic properties of bulk TiB2 and available experimental and theoretical data. We then obtain the formation energies for several surface cuts and use these values to construct TiB2 NCs based on the Wulff theorem. Finally, we demonstrate by studying the adsorption of small molecules that hydrogen and oxygen adatoms can be attached through strongly exothermic chemisorption reactions on TiB2 surfaces. Likewise, water molecules bind on various TiB2 surfaces and NC facets, with an energetic preference for the latter. The results are relevant to applications that depend on reactivity-related TiB2 properties, for example resistance to corrosion and interactions with water-based solutions.  相似文献   
7.
The aggregation behavior of two pH- and temperature-responsive diblock copolymers of poly[di-(ethylene glycol) methyl ether methacrylate]-block-poly[2-(diisopropylamino) ethyl methacrylate] (PDEGMA-b-PDIPAEMA) at the air/water interface and the structures of their Langmuir–Blodgett (LB) films were studied by the Langmuir monolayer technique and atomic force microscopy, respectively. At the air/water interface, PDEGMA-b-PDIPAEMA tends to form the core-shell-corona micellar structure composed of a PDIPAEMA main chain core, an amino ethyl ester shell, and a PDEGMA corona. Under acidic, neutral, and alkaline conditions, PDIPAEMA blocks are completely protonated, partially protonated, and completely non-protonated, respectively, and the protonated amino ethyl ester groups are immersed in water before monolayer compression, whereas PDEGMA coronas are adsorbed at the interface. At pH 3, 7, and 10, the limiting areas (A0) for PDEGMA42%-PDIPAEMA58% (weight percents) and PDEGMA55%-PDIPAEMA45% are 8.2/10.2/14.0 and 6.7/8.3/8.4 nm2, respectively. The A0 values of the former copolymer are larger than those of the latter. This is because the shells in the former copolymer are denser due to the higher polymerization degree of PDIPAEMA blocks, providing greater steric hindrance for PDEGMA coronas and making the latter more extended at the interface. In contrast to other copolymer systems, the effect of temperature on the isotherms of PDEGMA-b-PDIPAEMA is less obvious.  相似文献   
8.
9.
The present article examines the aging behavior in the marine environment of some representative flexible plastic packaging films including supermarket plastic bags made of low‐density polyethylene (LDPE), polyethylene terephthalate (PET) films, polyamide–polyethylene (PAPE) films and films made of a material under the commercial name Mater‐Bi®. The effect of aging was studied by Fourier transform infrared spectroscopy, differential scanning calorimetry, and tension including creep‐recovery tests. The polyethylene films were not hydrolytically degraded during aging in seawater, and the polyethylene chains did not undergo any substantial chain scission. The PET films after exposure for 8 months in seawater did not suffer any substantial degradation, and the PET chains were plasticized by the absorbed water. After prolonged exposure to seawater (12 months), the PET films started to degrade. The PAPE film underwent extensive chemical and structural changes during aging in seawater as result of plasticization and hydrolysis of the polyamide (PA) component in combination with an eventual loosening of the tie layer. Mater‐Bi® film underwent a severe deterioration during aging in seawater due to the hydrolysis of the starch and polycaprolactone components. All films exhibited a marked degradation of their tensile properties after exposure to accelerating aging conditions under UV radiation. POLYM. ENG. SCI., 59:E432–E441, 2019. © 2019 Society of Plastics Engineers  相似文献   
10.
This study was conducted to assess the effect of the pulping by-products crude tall oil (CTO), distilled tall oil (DTO), and tall oil fatty acid (TOFA) on dynamic water vapor sorption behavior, interfiber strength, and thermal stability of cellulosic paper-sheets. The results were compared against those obtained in cellulose papers treated with the conventional petroleum-derived hydrophobic agent hydrowax and in untreated ones. The tall oil treatments caused strong reduction in equilibrium moisture content of the paper-sheets during adsorption and desorption runs. The same trend was noticed for the hydrowax-treated papers, however, it was less pronounced than the CTO-treated and DTO-treated samples in the relative humidity range of 75–95%. The sorption hysteresis was considerably decreased after the treatments. The ultimate dry-tensile strengths of the paper-sheets were significantly reduced by TOFA and hydrowax treatments, while CTO and DTO showed comparable strength as that of untreated control. The ultimate wet-strengths of the paper-sheets were improved after the treatments. The thermal stability of the specimens was improved by the tall oil treatments, and the hydrowax-treated samples illustrated lower degradation temperature than the untreated control. The results are promising for the use of tall oils as alternative hydrophobic agents of cellulosic fiber-based products, such as wood panels and paper packaging. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47303.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号