首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   2篇
矿业工程   3篇
无线电   1篇
冶金工业   2篇
原子能技术   2篇
  2023年   1篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2016年   1篇
排序方式: 共有8条查询结果,搜索用时 28 毫秒
1
1.
激光诱导击穿光谱技术具有可以实现多种元素同时测量、可以实现原位/在线测量、可以对气体、液体、固体及气溶胶等多种物质进行测量等优点,被用于空气、水、土壤等环境监测的各个领域。针对不同的检测对象,从样品准备、实验设计、数据处理、应用结果等4个方面介绍了近年国内外的研究进展。概述了激光诱导击穿光谱技术在环境监测领域中的应用现状和发展前景。  相似文献   
2.
铝合金是工业应用中最广泛的有色金属,添加一定元素形成的合金成为理想的结构材料,如何快速、精确的检测合金中元素的含量是生产和使用中的关键问题。实验基于样品加热结合空间约束的飞秒激光诱导击穿光谱方法(Femtosecond laser-induced breakdown spectroscopy,fs-LIBS)对铝合金元素进行了定量分析,探讨了样品加热结合空间约束条件下等离子体辐射光谱增强、稳定性提高的物理原因。实验结果发现,利用样品加热空间约束方法,等离子体辐射光谱增强,随着靶材温度的升高,等离子体辐射存在时间也明显延长;通过对铝合金系列中的Mn元素进行分析,比较了无约束、空间约束和样品加热结合空间约束实验条件下fs-LIBS的检出限、相对标准偏差和拟合度值,相比于无约束fs-LIBS,通过样品加热空间约束,在样品温度为150℃时,检出限和相对标准偏差值分别大约降低到原来的1/5和1/4,同时拟合度达到0.99以上。因此,利用样品加热结合空间约束方法,可以提高LIBS技术对于合金元素定量分析的探测灵敏度和分析精度。  相似文献   
3.
正Laser-induced breakdown spectroscopy (LIBS), firstly proposed in 1962 as Brech and Cross [1] successfully detected the plasma emission induced by a ruby laser,has attracted more and more attention in both academia and industry due to its unique analytical features such as little or no sample preparation, simultaneous  相似文献   
4.
铝合金是工业应用中最广泛的有色金属,添加一定元素形成的合金成为理想的结构材料,如何快速、精确的检测合金中元素的含量是生产和使用中的关键问题。实验基于样品加热结合空间约束的飞秒激光诱导击穿光谱方法(Femtosecond laser-induced breakdown spectroscopy,fs-LIBS)对铝合金元素进行了定量分析,探讨了样品加热结合空间约束条件下等离子体辐射光谱增强、稳定性提高的物理原因。实验结果发现,利用样品加热空间约束方法,等离子体辐射光谱增强,随着靶材温度的升高,等离子体辐射存在时间也明显延长;通过对铝合金系列中的Mn元素进行分析,比较了无约束、空间约束和样品加热结合空间约束实验条件下fs-LIBS的检出限、相对标准偏差和拟合度值,相比于无约束fs-LIBS,通过样品加热空间约束,在样品温度为150℃时,检出限和相对标准偏差值分别大约降低到原来的1/5和1/4,同时拟合度达到0.99以上。因此,利用样品加热结合空间约束方法,可以提高LIBS技术对于合金元素定量分析的探测灵敏度和分析精度。  相似文献   
5.
6.
针对燃煤火力发电站,基于智能发电平台ICS,搭建AGC性能优化模块,通过设备层面优化、逻辑算法和控制层面优化、节流技术优化和智能监控优化方面的组合技术,提升机组AGC调节品质,以满足电网2个细则的考核要求。结果表明,逻辑和控制层面的优化措施包括:利用锅炉蓄热分段控制、锅炉智能动态前馈、煤质和燃烧强度在线软测量校正锅炉主控信号、增加燃料偏置功能、优化汽机主控PID参数、修改变负荷限速控制的逻辑控制死区、修改负荷速率调节策略和设计轮值控制逻辑。节流控制优化措施包括:供热抽汽旁路节流和凝结水节流。AGC优化措施实施后,机组负荷调节速率由5MW/min提升至8.25MW/min,AGC投入率超过98%,机组AGC性能指标位列蒙西电网前3名,在国内同类型机组中处于领先水平;降低发电煤耗2.84g/kWh,降低厂用电率0.484%,Kp值由小于2,提升至3.4~4.6。  相似文献   
7.
Laser-induced breakdown spectroscopy(LIBS) is a qualitative and quantitative analytical technique with great potential in the cement industrial analysis. Calibration curve(CC) and support vector regression(SVR) methods coupled with LIBS technology were applied for the quantification of three types of cement raw meal samples to compare their analytical concentration range and the ability to reduce matrix effects, respectively. To reduce the effects of fluctuations of the pulse-to-pulse, the unstable ablation and improve the reproducibility, all of the analysis line intensities were normalized on a per-detector basis. The prediction results of the elements of interest in the three types of samples, Ca, Si, Fe, Al, Mg, Na, K and Ti, were compared with the results of the wet chemical analysis. The average relative error(ARE),relative standard deviation(RSD) and root mean squared error of prediction(RMSEP) were employed to investigate and evaluate the prediction accuracy and stability of the two prediction methods. The maximum average ARE of the CC and SVR methods is 34.62% instead of 6.13%,RSD is 40.89% instead of 7.60% and RMSEP is 1.34% instead of 0.43%. The results show that SVR method can accurately analyze samples within a wider concentration range and reduce the matrix effects, and LIBS coupled with it for a rapid, stable and accurate quantification of different types of cement raw meal samples is promising.  相似文献   
8.
煤质在线分析技术可为洗选煤、混配煤、燃烧优化等提供快速煤质特性数据,因而其为实现煤炭清洁高效利用的关键支撑技术。激光诱导击穿光谱(LIBS)具有全元素分析、原位实时测量、安全无辐射等优势,成为最具潜力的煤质在线分析技术之一。简要介绍LIBS技术的基本原理,阐述提高LIBS煤质分析定量化性能的方法及提升长期稳定性需注意的问题,剖析LIBS煤质在线分析常用测量与布置方式等并展望LIBS煤质在线分析的发展趋势。研究表明:LIBS煤质在线分析技术的可行性已得以验证并研制煤块测量、煤粉测量、压片测量等多种测量方式的设备,目前压片式测量仍是LIBS煤质在线分析较合适的方式;在基础研究方面需深入研究激光、煤、等离子体和环境气体之间的相互作用机制,进一步开发提高LIBS煤质分析可重复性并降低基体效应影响的技术方法;在定量化模型方面,不仅要结合大数据、人工智能等先进的机器学习算法,也应考虑LIBS煤质分析的物理背景并将其融入模型中;采用LIBS与微波、XRF、拉曼等其他技术相结合以提高硫和微量元素的定量性能也将是未来重要的研究方向;在工业应用中还需重点考虑测量代表性、设备的长期稳定性和煤种适应性等因素,...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号