首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  国内免费   1篇
综合类   1篇
金属工艺   1篇
一般工业技术   2篇
冶金工业   1篇
自动化技术   1篇
  2023年   1篇
  2021年   2篇
  2019年   2篇
  2017年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
(In, Co)共掺的ZnO薄膜(ICZO薄膜)在100 ℃下通过射频(RF)溅射沉积至玻璃基板上。沉积过程采用In、Co、Zn三靶共溅射。通过调节靶功率,获得了不同In含量的ICZO薄膜。研究了不同In含量下薄膜电学性质和磁学性质的变化。分别使用扫描电子显微镜(SEM)、高分辨透射电子显微镜(HR-TEM)、原子力显微镜(AFM)、电子探针扫描(EPMA)、X射线衍射仪(XRD)、霍尔测试(Hall measurement)和振动样品磁强计(VSM)对薄膜的成分、形貌、结构、电学特性和磁学特性进行了表征和分析。详细分析了薄膜中载流子浓度对磁学性质的影响。实验结果表明,随着薄膜中In含量的提高,薄膜中载流子浓度显著提高,薄膜的导电性得到优化。所有的薄膜均表现出室温下的铁磁特性。与此同时,束缚磁极化子(BMP)模型与交换耦合效应两种不同的机制作用于ICZO半导体材料,致使薄膜的饱和磁化强度随载流子浓度发生改变,并呈现在三个不同的区域。   相似文献   
2.
在非晶硅太阳能电池中加入复合背电极是提高非晶硅太阳能电池光电转换效率和稳定性的有效手段.本文利用磁控溅射技术在非晶硅薄膜太阳能电池上制备了ZnO :Ga(GZO)/Al复合背电极,研究了GZO厚度对GZO薄膜光电性质及非晶硅电池中GZO/Al复合背电极性能的影响.研究表明:随着GZO层厚度的增加,GZO薄膜的光电性质均表现出较高水平,适合制备GZO/Al复合背电极;相较于单层Al背电极的非晶硅太阳能电池,具有GZO/Al复合背电极的太阳能电池性能大幅提高.当GZO层厚度为100 nm时,太阳能电池的短路电流(ISC)、开路电压(VOC)和填充因子(FF)分别达到8.66 mA,1.62 V和54.7%.  相似文献   
3.
随着信息技术的飞速发展,教育信息化已成为人们关注的焦点,让信息化潮流涌进农村中小学,为广大农村孩子营造数字化学习环境,最大限度地缩小城乡之间的教育差距,并使之适应新课程改革发展的需要,成为目前我们必须研究的课题.  相似文献   
4.
为改善TiN硬质薄膜的硬度和耐摩擦磨损性能,采用多弧离子镀技术,在硬质合金基底上制备了单层TiN-Cu薄膜和调制周期Λ=5.9~62.1 nm的5组TiCu/TiN-Cu纳米多层复合膜。使用扫描电子显微镜(SEM)、X射线能谱仪(EDS)、X射线衍射仪(XRD)、纳米压痕仪、划痕仪和摩擦磨损试验机等测试仪器,表征了薄膜的微观结构及机械性能,并研究了调制周期对纳米多层复合膜结构及机械性能的影响。实验结果表明:与单层TiN-Cu薄膜相比,TiCu/TiN-Cu纳米多层复合膜有效地抑制了晶粒生长,而且分层明显,薄膜均匀致密,薄膜中TiN晶粒以面心立方结构沿(111)方向生长。随着调制周期的减小,薄膜的结晶性有所下降,薄膜的硬度呈现先增大后减小的趋势。在调制周期为13.7 nm时,薄膜综合性能达到最佳,薄膜的硬度达到了42.6 GPa,H~3/E~2值也达到了0.689,摩擦系数为0.17,附着力为49.2 N,接近53.1 N的最高值,表明薄膜具有理想的硬度和耐摩擦磨损能力。在使用多弧离子镀工艺制备TiCu/TiN-Cu纳米多层复合多层膜的过程中,通过调整调制周期,有效地改善了膜层的机械性能,拓展了膜层的应用范围。  相似文献   
5.
使用多弧离子镀技术在高速钢基体上制备了调制周期为5~40 nm的Ti/TiN纳米多层膜,用扫描电子显微镜(SEM)、X射线能谱仪(EDS)、X射线衍射仪(XRD)、纳米压痕仪和划痕仪等手段表征薄膜的微观结构和性能,研究了调制周期对Ti/TiN纳米多层膜性能的影响,并讨论了在小调制周期条件下Ti/TiN纳米多层膜的超硬效应和多弧离子镀技术对纳米多层膜硬度的强化作用。结果表明,与单层TiN相比,本文制备的Ti/TiN纳米多层膜分层情况良好,薄膜均匀致密,没有明显的柱状晶结构,TiN以面心立方结构沿(111)方向择优生长。随着调制周期的减小薄膜的硬度呈现先增大后减小的趋势,并在调制周期为7.5 nm时具有最大的硬度42.9 GPa和H/E值。这表明,Ti/TiN在具有最大硬度的同时仍然具有良好的耐磨性和韧性。Ti/TiN纳米多层膜的附着力均比单层TiN薄膜的附着力高,调制周期为7.5 nm时多层膜的附着力为(58±0.9) N。  相似文献   
6.
本文对航空航天、汽车工业和火力发电等领域热端部件高温防护涂层的研究现状和成果进行了总结,分析了激光熔覆制备涂层可能产生的缺陷种类及形成原因,最后指出激光熔覆技术未来发展所面临的困难和挑战,并对该技术的发展方向和趋势进行展望。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号