首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   2篇
金属工艺   3篇
机械仪表   1篇
冶金工业   2篇
  2024年   1篇
  2023年   1篇
  2021年   2篇
  2019年   1篇
  2017年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
低碳中锰钢因为其优异的力学性能及低成本的成分设计逐渐被应用到海洋平台用厚板生产制备中,通过对钛微合金化低碳中锰钢进行控轧控冷工业试验,观察不同厚度位置的显微组织及析出物形貌,测定了室温拉伸及低温冲击韧性,并对其强韧化机制进行了分析。结果表明,试验钢基体为板条宽度200~400nm的回火马氏体和宽度为50~100nm的逆? 浒率咸甯春喜阕醋橹胰穸确较蜃橹阅芫刃越虾茫慷染笥?60MPa、屈强比均小于等于0. 88、伸长率均大于20%、-60℃冲击功均大于200J。试验钢的主要强韧化机制有亚微米尺度的复合层状组织、大角度晶界韧化机制、亚稳态逆? 浒率咸錞RIP效应、Ti(C,N)粒子的细晶强化及析出强化效应,多种强化机制叠加作用,最终获得高强韧的中锰钢厚板。  相似文献   
2.
研究了不同热处理工艺对热轧超低碳中锰钢80 mm特厚板组织性能的影响。在线淬火态钢板分别进行了回火和离线调质处理两种热处理。结果表明,特厚板经离线调质后厚度方向1/2和1/4位置的显微组织较回火后的显著细化,形成了回火马氏体和逆转变奥氏体。离线调质态特厚板的屈服强度≥700 MPa,屈强比0.83,伸长率≥35%,-60 ℃冲击吸收能量≥125 J,获得了优异的强韧性匹配,而且具有较高的厚度方向组织性能均匀性,综合力学性能满足FH690级别要求  相似文献   
3.
对淬火态中锰钢进行了不同温度的回火试验,研究了不同回火温度下逆转变奥氏体的含量和稳定性,及其对中锰钢强韧性能的影响。结果表明:当回火温度由630 ℃升高至670 ℃时,中锰钢室温组织中逆转变奥氏体体积分数由19%增加至42%,逆转变奥氏体稳定性不断降低;中锰钢的屈服强度由750 MPa降低至565 MPa,抗拉强度由845 MPa升高至970 MPa, -60 ℃冲击吸收能量由116 J减小至75 J。高体积分数、低稳定性的逆转变奥氏体会降低中锰钢的屈服强度,但会提高中锰钢的加工硬化能力。在冲击载荷作用下,组织中的逆转变奥氏体发生相变诱导塑性(Transformation-induced plasticity, TRIP)效应,显著提高裂纹形成功和裂纹扩展功,是中锰钢主要的韧化机制。  相似文献   
4.
齐祥羽  严玲  杜林秀 《钢铁》2024,(1):132-138
为了实现Q550D高强度中厚板的高质量焊接,从而促进其在煤矿液压支架领域的推广应用,采用CO2半自动气体保护焊对煤矿液压支架用550 MPa级高强度中厚板进行了焊接试验,采用金相显微镜观察了焊接接头的显微组织,采用电子背散射技术和透射电子显微镜观察了焊接接头粗晶区的晶体学特征和精细形貌,采用拉伸和冲击试验机测定了焊接接头的综合力学性能。结果表明,焊接接头的屈服强度为655 MPa、抗拉强度为747 MPa、断后伸长率为18.5%,在母材处发生断裂;焊缝、熔合线、熔合线向外1 mm、熔合线向外3 mm和熔合线向外5 mm处的-20℃冲击吸收功分别为82、113、106、124和159 J;焊缝、粗晶区、细晶区、临界区和母材各区域的平均硬度值分别为294.07HV、293.18HV、264.67HV、275.02HV和278.49HV。与母材相比,焊缝和粗晶区为局部硬化区,硬化率分别为5.59%和5.27%,细晶区和临界区分别为局部软化区,软化率分别为4.96%和1.25%。高位错密度的针状铁素体板条纵横交错、彼此咬合,可有效阻碍裂纹的扩展,从而改善了粗晶区的力学性能...  相似文献   
5.
采用Ar-CO2气体保护焊通过最高硬度试验和斜Y型坡口焊接冷裂纹试验,研究了Q690ZM中锰钢的焊接冷裂纹敏感性.结果表明:当焊接热输入由10 kJ·cm-1增加至20 kJ·cm-1或预热温度由20℃升高至200℃时,中锰钢焊接热影响区的显微硬度均略微降低,最高硬度均高于430 HV,焊接冷裂倾向严重;当焊接热输入为15 kJ·cm-1,预热温度由100℃升高至200℃时,斜Y型坡口焊接裂纹试验中试验焊缝的表面裂纹和根部裂纹逐渐消失,断面裂纹率降低至9.09%.为防止冷裂纹的产生,中锰钢焊前必须进行150~200℃的预热,并进行相应的焊后热处理;粗晶热影响区中粗大的马氏体板条晶体学取向差小,大角度晶界密度低,抵抗解理裂纹扩展的能力弱,因此焊接冷裂纹萌生后沿紧邻熔合线的粗晶热影响区扩展.  相似文献   
6.
齐祥羽  严玲  王长顺  张鹏  李广龙 《轧钢》2023,(2):24-29+63
为实现高锰钢良好的强韧性能匹配,对高锰钢中厚板进行了控轧控冷工艺试验,通过金相显微镜、扫描电镜和透射电镜观察了高锰钢中厚板的显微组织,采用拉伸和冲击试验机测定了高锰钢中厚板的综合力学性能。结果表明:高锰钢中厚板显微组织为单相奥氏体,奥氏体晶粒尺寸为10~20μm,碳化物弥散分布在奥氏体晶界处,且奥氏体晶粒内部存在较大尺寸的孪晶;高锰钢中厚板纵向屈服强度、抗拉强度、断后伸长率和-196℃冲击功分别为508 MPa、862 MPa、50.07%和124 J,高锰钢中厚板横向屈服强度、抗拉强度、断后伸长率和-196℃冲击功分别为511 MPa、856 MPa、51.67%和97 J;奥氏体晶界处弥散分布的硬相(Cr, Mn)23C6型碳化物,可有效提高高锰钢中厚板的强度;孪晶诱导塑性(TWIP)效应产生大量形变孪晶,增加了均匀伸长率,是高锰钢主要的增塑机制;软相奥氏体中形成的机械孪晶促进位错滑移和增殖,同时产生较强的晶粒细化效应,是高锰钢主要的韧化机制。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号