首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
原子能技术   3篇
  2022年   2篇
  2013年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
A fully kinetic particle-in-cell/Monte Carlo model is employed to self-consistently study the effects of fast-ion injection on sheath potential and electric field profile in collisional magnetized plasma with a floating absorbing wall. The influences of the fast-ion injection velocity and density, the magnetic field and angle θ0 formed by the magnetic field and the x-axis on the sheath potential and electric field are discussed in detail. Numerical results show that increasing fast-ion injection density or decreasing injection velocity can enhance the potential drop and electric field in the sheath. Also, increasing the magnetic field strength can weaken the loss of charged particles to the wall and thus decrease the potential and electric field in the sheath. The time evolution of ion flux and velocity distribution on the wall is found to be significantly affected by the magnetic field.  相似文献   
2.
A two-dimensional electromagnetic particle-in-cell simulation model is proposed to study the density evolution and collective stopping of electron beams in background plasmas. We show here the formation of the multi-layer structure of the relativistic electron beam in the plasma due to the different betatron frequency from the beam front to the beam tail. Meanwhile, the nonuniformity of the longitudinal wakefield is the essential reason for the multi-layer structure formation in beam phase space. The influences of beam parameters (beam radius and transverse density profile) on the formation of the multi-layer structure and collective stopping in background plasmas are also considered.  相似文献   
3.
The study of the interaction between ion beam and plasma is very important to the areas of inertial fusion energy and high energy density physics. With detailed one-dimensional electromagnetic particle-in-cell simulations, we investigate here the interaction of a laser-accelerated proton beam assuming an ideal monoenergetic beam with a gas-discharge plasma. After the saturation stage of the two-stream instability excited by the proton beam, significant high energy electrons are observed, with maximum energy approaching 2 MeV, and a new two-stream instability occurs between the high energy electrons and background electrons. The trajectories of plasma electrons are studied, showing the process of electron trapping and de-trapping from the wakefield.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号