首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5348篇
  免费   107篇
  国内免费   15篇
电工技术   244篇
综合类   5篇
化学工业   1078篇
金属工艺   134篇
机械仪表   141篇
建筑科学   75篇
矿业工程   1篇
能源动力   188篇
轻工业   297篇
水利工程   24篇
石油天然气   4篇
无线电   570篇
一般工业技术   828篇
冶金工业   1343篇
原子能技术   168篇
自动化技术   370篇
  2023年   25篇
  2022年   14篇
  2021年   84篇
  2020年   48篇
  2019年   52篇
  2018年   54篇
  2017年   65篇
  2016年   87篇
  2015年   57篇
  2014年   98篇
  2013年   242篇
  2012年   155篇
  2011年   221篇
  2010年   154篇
  2009年   192篇
  2008年   226篇
  2007年   173篇
  2006年   180篇
  2005年   149篇
  2004年   134篇
  2003年   152篇
  2002年   130篇
  2001年   106篇
  2000年   120篇
  1999年   151篇
  1998年   543篇
  1997年   323篇
  1996年   221篇
  1995年   158篇
  1994年   137篇
  1993年   133篇
  1992年   51篇
  1991年   57篇
  1990年   48篇
  1989年   50篇
  1988年   53篇
  1987年   50篇
  1986年   64篇
  1985年   39篇
  1984年   53篇
  1983年   44篇
  1982年   50篇
  1981年   47篇
  1980年   44篇
  1979年   20篇
  1978年   37篇
  1977年   44篇
  1976年   64篇
  1975年   14篇
  1974年   11篇
排序方式: 共有5470条查询结果,搜索用时 203 毫秒
1.
Monitoring the temperature in liquid hydrogen (LH2) storage tanks on ships is important for the safety of maritime navigation. In addition, accurate temperature measurement is also required for commercial transactions. Temperature and pressure define the density of liquid hydrogen, which is directly linked to trading interests. In this study, we developed and tested a liquid hydrogen temperature monitoring system that uses platinum resistance sensors with a nominal electrical resistance of approximately 1000 Ω at room temperature, PT-1000, for marine applications. The temperature measurements were carried out using a newly developed temperature monitoring system under different pressure conditions. The measured values are compared with a calibrated reference PT-1000 resistance thermometer. We confirm a measurement accuracy of ±50 mK in a pressure range of 0.1 MPa–0.5 MPa.  相似文献   
2.
The flux‐modulating synchronous machine (FMSM) is a new type of multipole SM with nonoverlapping concentrated armature and field windings on the stator. This paper compares the output characteristics of two FMSMs through finite element analysis (FEA) and experiments. In both of the FMSMs, the attachment positions of the armature and field windings are swapped. To determine the reason for the discrepancies in their output characteristics, unsaturated inductances were calculated using a d‐q equivalent circuit. In addition, the calculated results of the inductances were confirmed through a visualization of the leakage fluxes using FEA. The results of the study show that the synchronous inductance can be reduced by attaching the armature winding to the air‐gap side of the stator teeth and that the reduction leads to an increase in output power.  相似文献   
3.
The effect of SO2 gas was investigated on the activity of the photo-assisted selective catalytic reduction of nitrogen monoxide (NO) with ammonia (NH3) over a TiO2 photocatalyst in the presence of excess oxygen (photo-SCR). The introduction of SO2 (300 ppm) greatly decreased the activity of the photo-SCR at 373 K. The increment of the reaction temperature enhanced the resistance to SO2 gas, and at 553 K the conversion of NO was stable for at least 300 min of the reaction. X-ray diffraction, FTIR spectroscopy, thermogravimetry and differential thermal analysis, x-ray photoelectron spectroscopy (XPS), elemental analysis and N2 adsorption measurement revealed that the ammonium sulfate species were generated after the reaction. There was a strong negative correlation between the deposition amount of the ammonium sulfate species and the specific surface area. Based on the above relationship, we concluded that the deposition of the ammonium sulfate species decreased the specific surface area by plugging the pore structure of the catalyst, and the decrease of the specific surface area resulted in the deactivation of the catalyst.  相似文献   
4.
Since the introduction of bender element tests to soil testing, the reliability of the estimated travel time has been the most serious problem. The author has previously shown a potential solution whereby removing the response of the bender element subsystem from the whole response could dramatically improve the accuracy of the travel time estimation. In order to lay the foundation for estimating the response of the bender element subsystem, this paper examines the correlation between the displacements of the element and the induced feedback signals by employing a self-monitoring element. The response of the self-monitoring element is modeled as a transfer function involving two internal transfer functions that relate the input signals to the displacements and the displacements to the feedback signals, respectively. Using a laser displacement sensor, the displacements are directly measured through the entire surface and reveal the three-dimensional bending motion of the element oscillating in both longitudinal and width directions. The feedback signals are similar to, but inconsistent with, the tip displacements, and an attempt is made to correct the feedback signals. Finally, a conclusion is given on the potential for estimating the response of the bender element subsystem using the self-monitoring element.  相似文献   
5.
Self-assembled peptide hydrogels represent the realization of peptide nanotechnology into biomedical products. There is a continuous quest to identify the simplest building blocks and optimize their critical gelation concentration (CGC). Herein, a minimalistic, de novo dipeptide, Fmoc-Lys(Fmoc)-Asp, as an hydrogelator with the lowest CGC ever reported, almost fourfold lower as compared to that of a large hexadecapeptide previously described, is reported. The dipeptide self-assembles through an unusual and unprecedented two-step process as elucidated by solid-state NMR and molecular dynamics simulation. The hydrogel is cytocompatible and supports 2D/3D cell growth. Conductive composite gels composed of Fmoc-Lys(Fmoc)-Asp and a conductive polymer exhibit excellent DNA binding. Fmoc-Lys(Fmoc)-Asp exhibits the lowest CGC and highest mechanical properties when compared to a library of dipeptide analogues, thus validating the uniqueness of the molecular design which confers useful properties for various potential applications.  相似文献   
6.
The arc welding has been used in various welding methods because it is inexpensive and high in strength after welding. However, it is a problem that accidents such as collapse of the bridge occur because of the welding defects. The welding of low cost and high productivity is required without the welding defects. The pulsed TIG welding is inexpensive and capable of high‐quality welding. The electromagnetic force contributing to penetration changes because the transient response of arc temperature and iron vapor generated from anode occurs. However, the analysis of pulsed TIG welding with metal vapor has been elucidated only metal vapor concentration near anode with transient phenomenon and heat flux. Thus, the theoretical elucidation of penetration depth with control factor has not been researched. In this paper, the contribution of metal vapor mass at the periphery part of pulsed arc to the electromagnetic force in the weld pool is elucidated. As a result, the iron vapor mass at periphery part decreased with increasing the frequency. The iron vapor was stagnated at axial center within one cycle. The electromagnetic force to the penetration depth direction in weld pool increased at axial center. Therefore, the metal vapor mass at periphery part plays an important role for the electromagnetic force increment at axial center.  相似文献   
7.
The chromium (Cr) evaporation behavior of several different types of iron (Fe)-based AFA alloys and benchmark Cr2O3-forming Fe-based 310 and Ni-based 625 alloys was investigated for 500 h exposures at 800 °C to 900 °C in air with 10% H2O. The Cr evaporation rates from alumina-forming austenitic (AFA) alloys were ~5 to 35 times lower than that of the Cr2O3-forming alloys depending on alloy and temperature. The Cr evaporation behavior was correlated with extensive characterization of the chemistry and microstructure of the oxide scales, which also revealed a degree of quartz tube Si contamination during the test. Long-term oxidation kinetics were also assessed at 800 to 1000 °C for up to 10,000 h in air with 10% H2O to provide further guidance for SOFC BOP component alloy selection.  相似文献   
8.
Fine-tuned, molecular-composite, organosilica membranes were fabricated via the co-condensation of organosilica precursors bis(triethoxysilyl)acetylene (BTESA) and bis(triethoxysilyl)benzene (BTESB). Fourier transform infrared and UV–vis spectra confirmed the co-condensation behaviors of BTESA and BTESB. The evolution of the network structure indicated that the incorporated BTESB decreased the membrane pore size, which was determined by a modified gas translation model according to the steric effect of the phenyl groups. The incorporation of BTESB to BTESA finely tuned the membrane structure and endowed the resultant composite membrane with improved separation properties. The BTESAB 9:1 membrane (molar ratio of BTESA/BTESB was 9:1) exhibited high C3H6 permeance at 4.5 × 10−8 mol m−2 s−1 Pa−1 and a C3H6/C3H8 permeance ratio of 33 at 50°C. One of the most important developments of this study involved clearly defining the relationship between membrane pore size and C3H6/C3H8 separation performance for organosilica membranes in single and binary separation systems.  相似文献   
9.
Many cables containing 1.3-/spl mu/m zero-dispersion single-mode (SM) optical fibers are installed in trunk and access networks. Recently, there have been a number of studies on wavelength-division-multiplexing (WDM) systems designed to increase transmission capacity and flexibility. If we can construct WDM systems using SM optical-fiber cable networks designed to transmit using wavelengths in the 1.3-/spl mu/m window (O-band), this will prove very effective in reducing construction costs. It is therefore important to examine the wavelength dependence of the transmission characteristics of SM optical-fiber cables and networks that have already been installed and in which several optical fibers are joined. In this paper, we describe the measured optical characteristics of SM optical-fiber cables and installed optical-fiber cable networks at various wavelengths. The optical characteristics were stable in the 1.46 to 1.625-/spl mu/m wavelength range and we confirmed that the installed SM optical-fiber cable networks could be used for WDM system applications.  相似文献   
10.
This paper discusses parallel wire mechanisms where an end-effector of the mechanism is suspended by multiple wires. The mechanisms enable not only three-dimensional (3-D) positioning but also 3-D orienting of the end-effector, unlike typical wire suspension-type mechanisms such as overhead crane. To discuss the parallel-wire-suspended mechanisms generally, two forms of basic dynamic equations are presented. Then the parallel wire mechanisms are classified into two types based on the basic equations. Dynamical properties of the two types of wire-suspended positioning mechanism are discussed. In this paper, one of the wire-suspended mechanism, incompletely restrained-type parallel wire mechanism, is mainly discussed on its inverse dynamics problem and its trajectory control problem. The inverse dynamics problem for the incompletely restrained-type mechanism plays an important role on its control problem, because the mechanism has low stiffness based on incomplete constraints on the suspended object which is governed by its dynamics. The paper proposes an antisway control method for the suspended object. In the method, the inverse dynamics calculation is used for nonlinear dynamics compensation to control the suspended object of the incompletely restrained parallel wire mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号