首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   5篇
  国内免费   3篇
无线电   2篇
自动化技术   12篇
  2019年   1篇
  2018年   4篇
  2017年   5篇
  2016年   1篇
  2015年   3篇
排序方式: 共有14条查询结果,搜索用时 25 毫秒
1.
目的 在复杂背景下,传统轮廓跟踪方法只考虑了目标的整体特征或显著性特征,没有充分利用目标的局部特征信息,尤其是目标发生遮挡时,容易发生跟踪漂移,甚至丢失目标.针对上述问题,提出一种基于局部模型匹配的几何活动轮廓(LM-GAC)跟踪算法.方法 首先,利用超像素技术将图像中的颜色特征相似的像素点归为一类,形成由一些像素点组成的超像素,从而把目标分割成若干个超像素块,再结合EMD(earth mover's distance)相似性度量构建局部特征模型.然后,进行局部模型匹配,引入噪声模型来估算局部模型参数θ,这样可以增强特征模型的自适应性,提高局部模型匹配的准确性.最后,结合粒子滤波的水平集分割方法提取目标轮廓,实现目标轮廓精确跟踪.结果 本文算法与多种目标轮廓跟踪算法进行对比,在部分遮挡、目标形变、光照变化、复杂背景等条件的基准图像序列均具有较高的跟踪成功率,平均成功率为79.6%.结论 实验结果表明,根据不同的图像序列,可以自适应地实时改变噪声模型参数和粒子的权重,使得本文算法具有较高的准确性和鲁棒性.特别是在复杂的背景下,算法能较准确地进行目标轮廓跟踪.  相似文献   
2.
经典稀疏表示目标跟踪算法在处理复杂视频时不免出现跟踪不稳定情况且当目标发生遮挡时易发生漂移现象。针对这一问题,提出一种基于子区域匹配的稀疏表示跟踪算法。首先,将初始目标模板划分为若干子区域,利用LK图像配准算法建立观测模型预测下一帧目标运动状态。然后,对预测的目标模型区域进行同等划分,并在匹配过程中寻找最优子区域。最后,在模板更新过程中引入一种新的模板校正机制,能够有效克服漂移现象。将该算法与多种目标跟踪算法在不同视频序列下进行对比,实验结果表明在目标发生遮挡、运动、光照影响及复杂背景等情况下该算法具有较为理想的跟踪效果,并与经典稀疏表示跟踪算法相比具有较好的跟踪性能。  相似文献   
3.
在复杂的非人脸成分干扰以及训练样本过大、训练样本之间相似度较高的条件下,原始稀疏表示分类(SRC)算法识别准确率较低。针对上述问题,提出一种基于主动表观模型的稀疏聚类(CS-AAM)人脸识别算法。首先,利用主动表观模型快速、准确地对人脸特征点进行定位,获取主要人脸信息;然后,对训练样本进行K-means聚类,将相似程度高的图像分为一类,计算聚类中心,将该中心作为原子构造过完备字典并进行稀疏分解;最后,计算稀疏系数和重构残差对人脸图像进行分类、识别。将该算法与最近邻(NN)、支持向量机(SVM)、稀疏表示分类(SRC)、协同表示分类(CRC)人脸识别算法在ORL和Extended Yale B人脸数据库上对不同样本数及不同维数的人脸图像分别进行识别率测试,在相同样本数或相同维数情况下CS-AAM算法识别率均高于其他算法。在ORL人脸库中选取样本数为210时,相同维数条件下CS-AAM算法识别率为95.2%;在Extended Yale B人脸库上选取样本数为600时,CS-AAM算法识别率为96.8%。实验结果表明,该算法能够有效地提高人脸图像的识别准确率。  相似文献   
4.
目的 基于水平集的轮廓提取方法被广泛用于运动物体的轮廓跟踪。针对传统方法易受局部遮挡、复杂背景等因素影响的问题,提出一种先验模型约束的抗干扰(AC-PMC)轮廓跟踪算法。方法 首先,选取图像序列的前5帧进行跟踪训练,将每帧图像基于颜色特征分割成若干超像素块,利用均值聚类组建簇集合,并通过该集合建立目标的先验模型。然后,利用水平集分割方法提取目标轮廓,并提出决策判定算法,判断是否需要引入形状先验模型加以约束,避免遮挡、复杂背景等影响。最后,提出一种在线模型更新算法,在特征集中加入适当特征补偿,使得更新的目标模型更为准确。结果 本文算法与多种优秀的轮廓跟踪算法相比,可以达到相同甚至更高的跟踪精度,在Fish、Face1、Face2、Shop、Train以及Lemming视频图像序列下的平均中心误差分别为3.46、7.16、3.82、13.42、14.72、12.47,算法的跟踪重叠率分别为0.92、0.74、0.85、0.77、0.73、0.82,算法的平均运行速度分别为4.27 帧/s、4.03 帧/s、3.11 帧/s、2.94 帧/s、2.16 帧/s、1.71 帧/s。结论 利用目标的先验模型约束以及提取轮廓过程中的决策判定,使本文算法在局部遮挡、目标形变、目标旋转、复杂背景等条件下具有跟踪准确、适应性强的特点。  相似文献   
5.
目的 基于目标模型匹配方法被广泛用于运动物体的检测与跟踪。针对传统模型匹配跟踪方法易受局部遮挡、复杂背景等因素影响的问题,提出一种前景划分下的双向寻优BOTFP (Bidirectional optimization tracking method under foreground partition)跟踪方法。方法 首先,在首帧中人工圈定目标区域,提取目标区域的颜色、纹理特征,建立判别外观模型。然后,利用双向最优相似匹配方法进行目标检测,计算测试图像中的局部特征块与建立的外观模型之间的相似性,从而完成模型匹配过程。为了避免复杂背景和相似物干扰,提出一种前景划分方法约束匹配过程,得到更准确的匹配结果。最后,提出一种在线模型更新算法,引入了距离决策,判断是否发生误匹配,避免前景区域中相似物体的干扰,保证模型对目标的描述更加准确。结果 本文算法与多种优秀的跟踪方法相比,可以达到相同甚至更高的跟踪精度,在Girl、Deer、Football、Lemming、Woman、Bolt、David1、David2、Singer1以及Basketball视频序列下的平均中心误差分别为7.43、14.72、8.17、13.61、24.35、7.89、11.27、13.44、12.18、7.79,跟踪重叠率分别为0.69、0.58、0.71、0.85、0.58、0.78、0.75、0.60、0.74、0.69。与同类方法L1APG (L1 tracker using accelerated proximal gradient approach),TLD (tracking-learning-detection),LOT (local orderless tracker)比较,平均跟踪重叠率提升了20%左右。结论 实验结果表明,在前景区域中,利用目标的颜色特征和纹理特征进行双向最有相似匹配,使得本文算法在部分遮挡、目标形变、复杂背景、目标旋转等条件下具有跟踪准确、适应性强的特点。  相似文献   
6.
现有子空间聚类算法不能很好地平衡子空间数据的稠密性和不同子空间数据稀疏性的关系,且无法处理数据的重叠问题。针对上述问题,提出一种稀疏条件下的重叠子空间聚类(OSCSC)算法。算法利用L1范数和Frobenius范数的混合范数表示方法建立子空间表示模型,并对L1范数正则项进行加权处理,提高不同子空间的稀疏性和同一子空间的稠密性;然后对划分好的子空间使用一种服从指数族分布的重叠概率模型进行二次校验,判断不同子空间数据的重叠情况,进一步提高聚类的准确率。在人造数据集和真实数据集上分别进行测试,实验结果表明,OSCSC算法能够获得良好的聚类结果。  相似文献   
7.
针对大多数子空间聚类方法处理非线性数据时聚类效果不理想、不同子空间数据相似性较高及聚类发生错误时无法及时校验的问题,提出局部加权最小二乘回归的重叠子空间聚类算法.利用K近邻思想突出数据的局部信息,取代非线性数据结构,通过高斯加权的方法选择最相似的近邻数据点,得到最优表示系数.然后使用重叠概率模型判断子空间内数据的重叠部分,再次校验聚类结果,提高聚类准确率.在人造数据集和真实数据集上分别进行测试,实验表明,文中算法能够取得较理想的聚类结果.  相似文献   
8.
针对模型匹配跟踪算法易受遮挡、复杂背景等因素影响的问题,提出判别外观模型下的寻优匹配跟踪算法.首先,提取前5帧图像的局部特征块,建立由特征块组成的训练样本集,并利用颜色、纹理特征进行聚类组建判别外观模型.然后,利用双向最优相似匹配方法进行目标检测.为了解决复杂背景干扰,提出前景划分方法约束匹配过程,得到更准确的匹配结果.最后,定期将跟踪结果加入聚类集合以更新外观模型.实验表明,由于利用多帧训练的判别外观模型及双向最优相似匹配方法,算法在局部遮挡、复杂背景等条件下的跟踪准确率较高.  相似文献   
9.
针对现有子空间聚类方法处理类簇间存在重叠时聚类准确率较低的问题,文中提出基于概率模型的重叠子空间聚类算法.首先采用混合范数的子空间表示方法将高维数据分割为若干个子空间.然后使用服从指数族分布的概率模型判断子空间内数据的重叠部分,并将数据分配到正确的子空间内,进而得到聚类结果,在参数估计时利用交替最大化方法确定函数最优解.在人造数据集和UCI数据集上的测试实验表明,文中算法具有良好的聚类性能,适用于较大规模的数据集.  相似文献   
10.
目的 在复杂背景下,传统模型匹配的跟踪方法只考虑了目标自身特征,没有充分考虑与其所处图像的关系,尤其是目标发生遮挡时,易发生跟踪漂移,甚至丢失目标。针对上述问题,提出一种前景判别的局部模型匹配(FDLM)跟踪算法。方法 首先选取图像帧序列前m帧进行跟踪训练,将每帧图像分割成若干超像素块。然后,将所有的超像素块组建向量簇,利用判别外观模型建立包含超像素块的目标模型。最后,将建立的目标模型作为匹配模板,采用期望最大化(EM)估计图像的前景信息,通过前景判别进行局部模型匹配,确定跟踪目标。结果 本文算法在前景判别和模型匹配等方面能准确有效地适应视频场景中目标状态的复杂变化,较好地解决各种不确定因素干扰下的跟踪漂移问题,和一些优秀的跟踪算法相比,可以达到相同甚至更高的跟踪精度,在Girl、Lemming、Liquor、Shop、Woman、Bolt、CarDark、David以及Basketball视频序列下的平均中心误差分别为9.76、28.65、19.41、5.22、8.26、7.69、8.13、11.36、7.66,跟踪重叠率分别为0.69、0.61、0.77、0.74、0.80、0.79、0.79、0.75、0.69。结论 实验结果表明,本文算法能够自适应地实时更新噪声模型参数并较准确估计图像的前景信息,排除背景信息干扰,在部分遮挡、目标形变、光照变化、复杂背景等条件下具有跟踪准确、适应性强的特点。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号