首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9257篇
  免费   490篇
  国内免费   19篇
电工技术   95篇
综合类   4篇
化学工业   1809篇
金属工艺   140篇
机械仪表   187篇
建筑科学   607篇
矿业工程   21篇
能源动力   313篇
轻工业   812篇
水利工程   107篇
石油天然气   25篇
无线电   683篇
一般工业技术   1922篇
冶金工业   1242篇
原子能技术   36篇
自动化技术   1763篇
  2023年   64篇
  2022年   56篇
  2021年   194篇
  2020年   175篇
  2019年   209篇
  2018年   231篇
  2017年   231篇
  2016年   254篇
  2015年   226篇
  2014年   335篇
  2013年   657篇
  2012年   555篇
  2011年   785篇
  2010年   501篇
  2009年   473篇
  2008年   588篇
  2007年   510篇
  2006年   433篇
  2005年   386篇
  2004年   325篇
  2003年   307篇
  2002年   272篇
  2001年   141篇
  2000年   139篇
  1999年   111篇
  1998年   109篇
  1997年   123篇
  1996年   119篇
  1995年   109篇
  1994年   86篇
  1993年   80篇
  1992年   75篇
  1991年   63篇
  1990年   75篇
  1989年   60篇
  1988年   43篇
  1987年   60篇
  1986年   52篇
  1985年   56篇
  1984年   51篇
  1983年   67篇
  1982年   48篇
  1981年   40篇
  1980年   36篇
  1979年   38篇
  1978年   29篇
  1977年   26篇
  1976年   23篇
  1975年   22篇
  1974年   14篇
排序方式: 共有9766条查询结果,搜索用时 15 毫秒
1.
Determining the structure of the (oligomeric) intermediates that form during the self-assembly of amyloidogenic peptides is challenging because of their heterogeneous and dynamic nature. Thus, there is need for methodology to analyze the underlying molecular structure of these transient species. In this work, a combination of fluorescence quenching, photo-induced crosslinking (PIC) and molecular dynamics simulation was used to study the assembly of a synthetic amyloid-forming peptide, Aβ16-22. A PIC amino acid containing a trifluormethyldiazirine (TFMD) group—Fmoc(TFMD)Phe—was incorporated into the sequence (Aβ*16–22). Electrospray ionization ion-mobility spectrometry mass-spectrometry (ESI-IMS-MS) analysis of the PIC products confirmed that Aβ*16–22 forms assemblies with the monomers arranged as anti-parallel, in-register β-strands at all time points during the aggregation assay. The assembly process was also monitored separately using fluorescence quenching to profile the fibril assembly reaction. The molecular picture resulting from discontinuous molecule dynamics simulations showed that Aβ16-22 assembles through a single-step nucleation into a β-sheet fibril in agreement with these experimental observations. This study provides detailed structural insights into the Aβ16-22 self-assembly processes, paving the way to explore the self-assembly mechanism of larger, more complex peptides, including those whose aggregation is responsible for human disease.  相似文献   
2.
The convenience of injectable hydrogels that can provide high loading of diverse phototherapy agents and further long-time retention at the tumor site has attracted tremendous interest in simultaneous photothermal and photodynamic cancer therapies. However, to incorporate the phototherapy agents into hydrogels, complex modifications are generally unavoidable. Moreover, these phototherapy agents usually suffer from low efficiency and work at different irradiation wavelengths outside the near infrared windows. Hence, a method for the fabrication of an injectable hydrogel for simultaneous photothermal therapy and photodynamic therapy, through the Schiff-base reaction between amido modified carbon dots (NCDs) and aldehyde modified cellulose nanocrystals is proposed. The NCDs act as both phototherapy agents and crosslinkers to form hydrogels. Significantly, the NCDs demonstrate an extremely high photothermal conversion efficiency of 77.6% which is among the highest levels for photothermal agents and a high singlet quantum yield of 0.37 under a single 660 nm light-emitting diode irradiation. The hydrogels are examined through in vitro and in vivo animal experiments which show nontoxic and effectively tumor inhibition. Thus, the strategy of direct reaction of phototherapy agents and the matrix not only provides new strategies for injectable hydrogel fabrication but paves a new road for advanced tumor treatment.  相似文献   
3.
Approximately 30 years ago, endoglin was identified as a transforming growth factor (TGF)-β coreceptor with a crucial role in developmental biology and tumor angiogenesis. Its selectively high expression on tumor vessels and its correlation with poor survival in cancer patients led to the exploration of endoglin as a therapeutic target for cancer. The endoglin neutralizing antibody TRC105 (Carotuximab®, Tracon Pharmaceuticals (San Diego, CA, USA) was subsequently tested in a wide variety of preclinical cancer models before being tested in phase I-III clinical studies in cancer patients as both a monotherapy and in combination with other chemotherapeutic and anti-angiogenic therapies. The combined data of these studies have revealed new insights into the role of endoglin in angiogenesis and its expression and functional role on other cells in the tumor microenvironment. In this review, we will summarize the preclinical work, clinical trials and biomarker studies of TRC105 and explore what these studies have enabled us to learn and what questions remain unanswered.  相似文献   
4.
Exocytosis plays an essential role in the communication between cells in the nervous system. Understanding the regulation of neurotransmitter release during exocytosis and the amount of neurotransmitter content that is stored in vesicles is of importance, as it provides fundamental insights to understand how the brain works and how neurons elicit a certain behavior. In this minireview, we summarize recent progress in amperometric measurements for monitoring exocytosis in single cells and electrochemical cytometry measurements of vesicular neurotransmitter content in individual vesicles. Important steps have increased our understanding of the different mechanisms of exocytosis. Increasing evidence is firmly establishing that partial release is the primary mechanism of release in multiple cell types.  相似文献   
5.
Secondary metabolites are structurally diverse natural products (NPs) and have been widely used for medical applications. Developing new tools to enrich NPs can be a promising solution to isolate novel NPs from the native and complex samples. Here, we developed native and deuterated chemoselective labeling probes to target phenol-containing glycopeptides by the ene-type labeling used in proteomic research. The clickable azido-linker was included for further biotin functionalization to facilitate the enrichment of labeled substrates. Afterward, our chemoselective method, in conjunction with LC-MS and MSn analysis, was demonstrated in bacterial cultures. A vancomycin-related phenol-containing glycopeptide was labeled and characterized by our labeling strategy, showing its potential in glycopeptide discovery in complex environments.  相似文献   
6.
Copper catalysts are widely studied for the electroreduction of carbon dioxide (CO2) to value-added hydrocarbon products. Controlling the surface composition of copper nanomaterials may provide the electronic and structural properties necessary for carbon-carbon coupling, thus increasing the Faradaic efficiency (FE) towards ethylene and other multi-carbon (C2+) products. Synthesis and catalytic study of silver-coated copper nanoparticles (Cu@Ag NPs) for the reduction of CO2 are presented. Bimetallic CuAg NPs are typically difficult to produce due to the bulk immiscibility between these two metals. Slow injection of the silver precursor, concentrations of organic capping agents, and gas environment proved critical to control the size and metal distribution of the Cu@Ag NPs. The optimized Cu@Ag electrocatalyst exhibited a very low onset cell potential of −2.25 V for ethylene formation, reaching a FE towards C2+ products (FEC2+) of 43% at −2.50 V, which is 1.0 V lower than a reference Cu catalyst to reach a similar FEC2+. The high ethylene formation at low potentials is attributed to enhanced C C coupling on the Ag enriched shell of the Cu@Ag electrocatalysts. This study offers a new catalyst design towards increasing the efficiency for the electroreduction of CO2 to value-added chemicals.  相似文献   
7.
Antimony and bismuth recovery from copper electrorefining electrolyte could reduce the impacts of these problem elements and produce a new primary source for them. Two proprietary phosphonic acid ester extractants were examined (REX-1 and REX-2) for the removal of antimony and bismuth from copper electrorefining electrolytes. Experimentation included shakeout and break tests to determine the basic parameters for the extractants in terms of maximum loading, break times, and extraction and stripping efficiency. Five permutations of extractant mixtures (100 wt.% REX-1 and 25 wt.%, 50 wt.%, 75 wt.% and 100 wt.% REX-2) were studied. It was determined that REX-2 was able to extract Sb and Bi from the electrolyte, but required some mixture with REX-1 to better facilitate stripping with 400 g/L sulfuric acid. The laboratory electrorefining electrolyte containing glue had faster disengagement times than a synthetic solution without glue.  相似文献   
8.
First‐order phase transitions, where one phase replaces another by virtue of a simple crossing of free energies, are best known between solids, liquids, and vapors, but they also occur in a wide range of other contexts, including even elemental magnets. The key challenges are to establish whether a phase transition is indeed first order, and then to determine how the new phase emerges because this will determine thermodynamic and electronic properties. Here it is shown that both challenges are met for the spin reorientation transition in the topological metallic ferromagnet Fe3Sn2. The magnetometry and variable temperature magnetic force microscopy experiments reveal that, analogous to the liquid–gas transition in the temperature–pressure plane, this transition is centered on a first‐order line terminating in a critical end point in the field‐temperature plane. The nucleation and growth associated with the transition is directly imaged, indicating that the new phase emerges at the most convoluted magnetic domain walls for the high temperature phase and then moves to self‐organize at the domain centers of the high temperature phase. The dense domain patterns and phase coexistence imply a complex inhomogenous electronic structure, which can yield anomalous contributions to the electrical conductivity.  相似文献   
9.
10.
A facile approach to locally concentrate analytes of interest will significantly enhance miniaturized, integrated chemical‐analysis systems. Here, the directed analyte transport and concentration using ≈200 µm‐diameter E‐jet printed chemical potential wells in a polyacrylamide hydrogel is demonstrated. Using a cationic well as the model system, anionic analytes are accumulated into a microscale area with a local concentration enhancement of >50‐fold relative to the surrounding area. By downscaling the diameter of the chemical potential well from a few millimeters to 100s of micrometers, it is found, using both fluorescence and Raman microscopy, that the molecular collection capacity of the well is greatly improved. Additionally, it is shown that molecules can be simultaneously transported and concentrated to arrays of microscale regions using an array of microscale chemical potential wells. This approach enhances many‐fold the limit of detection, enables the formation of microscale potential well arrays with a variety of chemical properties, and provides a novel microscale molecular manipulation technique as an alternative to traditional microfluidic‐based systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号