首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
能源动力   1篇
一般工业技术   9篇
自动化技术   1篇
  2019年   1篇
  2018年   1篇
  2009年   1篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
We calculate the gradient of the radiation field generated by a polarization current with a superluminally rotating distribution pattern and show that the absolute value of this gradient increases as R(7/2) with distance R, within the sharply focused subbeams that constitute the overall radiation beam from such a source. In addition to supporting the earlier finding that the azimuthal and polar widths of these subbeams become narrower (as R(-3) and R(-1), respectively) with distance from the source, this result implies that the boundary contribution to the solution of the wave equation governing the radiation field does not always vanish in the limit where the boundary tends to infinity (as is commonly assumed in textbooks and the published literature). While the boundary contribution to the retarded solution for the potential can always be rendered equal to zero by means of a gauge transformation that preserves the Lorenz condition, the boundary contribution to the retarded solution of the wave equation for the field may be neglected only if it diminishes with distance faster than the contribution of the source density. In the case of a rotating superluminal source, however, the boundary term in the retarded solution for the field is by a factor of the order of R(1/2)larger than the source term of this solution, in the limit where the boundary tends to infinity. This result explains why an argument based on the solution of the wave equation governing the field in which the boundary term is neglected [such as that presented by Hannay, J. Opt. Soc. A 23, 1530 (2006)] misses the nonspherical decay of the field that is generated by a rotating superluminal source. The only way one can calculate the free-space radiation field of an accelerated superluminal source is via the retarded solution for the potential. Our findings have implications also for the observations of the pulsar emission: The more distant a pulsar, the narrower and brighter its giant pulses should be.  相似文献   
2.
Finding energy sources to satisfy the world's growing demand is one of society's foremost challenges for the next half-century. The challenge in converting sunlight to electricity via photovoltaic solar cells is dramatically reducing $/watt of delivered solar electricity. In this context the sun trackers are such devices for efficiency improvement.The diurnal and seasonal movement of earth affects the radiation intensity on the solar systems. Sun-trackers move the solar systems to compensate for these motions, keeping the best orientation relative to the sun. Although using sun-tracker is not essential, its use can boost the collected energy 10–100% in different periods of time and geographical conditions. However, it is not recommended to use tracking system for small solar panels because of high energy losses in the driving systems. It is found that the power consumption by tracking device is 2–3% of the increased energy.In this paper different types of sun-tracking systems are reviewed and their cons and pros are discussed. The most efficient and popular sun-tracking device was found to be in the form of polar-axis and azimuth/elevation types.  相似文献   
3.
We report a spin resonance study of the family of quasi-two-dimensional organic (super)conductors β”-(BEDT-TTF)4[(H3O)M(C2O4)3]S, where M is a 3d transition metal ion and S is a host solvent molecule. The spin systems for M = Cr3+ (S = 3/2) and M = Fe3+ (S = 5/2) are investigated by means of both resonant and field modulation techniques in the frequency range between 50 and 313 GHz. The role of the different solvent molecules in determining the degree of spin-orbit coupling and the local symmetry at the metal ion site is established. The low temperature behaviour of intensities, positions and widths of the resonant lines shows significant modifications of the spin-orbit coupling, and of the inter-and intra-ionic spin-spin inter actions. Despite the onset of a weak antiferromagnetic internal field at low temperature, the ultimate narrowing of the lines suggests spin-lattice interactions may still be the dominant relaxation process. Diamagnetic screening in the mixed state of the superconducting samples for fields parallel to the quasi-two-dimensional layers induces additional lineshifts only below B = 2.5T and T = 4K, determining the threshold of full field penetration within the anion layers.  相似文献   
4.
We present a theoretical study of the emission from a superluminal polarization current whose distribution pattern rotates (with an angular frequency omega) and oscillates (with a frequency Omega) at the same time and that comprises both poloidal and toroidal components. This type of polarization current is found in recent practical machines designed to investigate superluminal emission. We find that the superluminal motion of the distribution pattern of the emitting current generates localized electromagnetic waves that do not decay spherically, i.e., that do not have an intensity diminishing as RP(-2) with the distance RP from their source. The nonspherical decay of the focused wave packets that are emitted by the polarization currents does not contravene conservation of energy: The constructive interference of the constituent waves of such propagating caustics takes place within different solid angles on spheres of different radii (RP) centered on the source. For a polarization current whose longitudinal distribution (over an azimuthal interval of length 2pi) consists of m cycles of a sinusoidal wave train, the nonspherically decaying part of the emitted radiation contains the frequencies Omega +/- momega; i.e., it contains only the frequencies involved in the creation and implementation of the source. This is in contrast to recent studies of the spherically decaying emission, which was shown to contain much higher frequencies. The polarization of the emitted radiation is found to be linear for most configurations of the source.  相似文献   
5.
We investigate the spectral features of the emission from a superluminal polarization current whose distribution pattern rotates (with an angular frequency omega) and oscillates (with a frequency omega > omega differing from an integral multiple of omega) at the same time. This type of polarization current is found in recent practical machines designed to investigate superluminal emission. Although all of the processes involved are linear, we find that the broadband emission contains frequencies that are higher than omega by a factor of the order of (omega/omega)2. This generation of frequencies not required for the creation of the source stems from mathematically rigorous consequences of the familiar classical expression for the retarded potential. The results suggest practical applications for superluminal polarization currents as broadband radio-frequency and infrared sources.  相似文献   
6.
We consider the nonspherically decaying radiation field that is generated by a polarization current with a superluminally rotating distribution pattern in vacuum, a field that decays with the distance R(P) from its source as R(P)(-1/2), instead of R(P)(-1). It is shown (i) that the nonspherical decay of this emission remains in force at all distances from its source independently of the frequency of the radiation, (ii) that the part of the source that makes the main contribution toward the value of the nonspherically decaying field has a filamentary structure whose radial and azimuthal widths become narrower (as R(P)(-2) and R(P)(-3), respectively) the farther the observer is from the source, (iii) that the loci on which the waves emanating from this filament interfere constructively delineate a radiation subbeam that is nondiffracting in the polar direction, (iv) that the cross-sectional area of each nondiffracting subbeam increases as R(P), instead of R(P)(2), so that the requirements of conservation of energy are met by the nonspherically decaying radiation automatically, and (v) that the overall radiation beam within which the field decays nonspherically consists, in general, of the incoherent superposition of such coherent nondiffracting subbeams. These findings are related to the recent construction and use of superluminal sources in the laboratory and numerical models of the emission from them. We also briefly discuss the relevance of these results to the giant pulses received from pulsars.  相似文献   
7.
The focusing of the radiation generated by a polarization current with a superluminally rotating distribution pattern is of a higher order in the plane of rotation than in other directions. Consequently, our previously published [J. Opt. Soc. Am. A24, 2443 (2007)] asymptotic approximation to the value of this field outside the equatorial plane breaks down as the line of sight approaches a direction normal to the rotation axis, i.e., is nonuniform with respect to the polar angle. Here we employ an alternative asymptotic expansion to show that, though having a rate of decay with frequency (mu) that is by a factor of order mu(2/3) slower, the equatorial radiation field has the same dependence on distance as the nonspherically decaying component of the generated field in other directions: It, too, diminishes as the inverse square root of the distance from its source. We also briefly discuss the relevance of these results to the giant pulses received from pulsars: The focused, nonspherically decaying pulses that arise from a superluminal polarization current in a highly magnetized plasma have a power-law spectrum (i.e., a flux density S infinity mu(alpha)) whose index (alpha) is given by one of the values -2/3, -2, -8/3, or -4.  相似文献   
8.
We filled SWNTs with the paramagnetic fullerene Sc@C82 to form peapods. The interfullerene 1D packing distance measured using TEM is d = 1.1 +/- 0.02 nm. The Sc@C82 in SWNT peapods continuously rotated during the 2 s TEM exposure time, and we did not see the Sc atoms. However, Sc@C82 metallofullerenes in MWNT peapods have periods of fixed orientation, indicated by the brief observation of Sc atoms. La@C82 peapods were also prepared and their rotational behavior examined. The interfullerene 1D packing of both La@C82 and Sc@C82 peapods is identical and thus independent of the charge transfer state for these paramagnetic fullerenes. The La@C82 metallofullerenes in the peapods have fixed orientations for extended periods of time, up to 50 s in some cases. The La@C82 spontaneously rotates rapidly between fixed orientations.  相似文献   
9.
The fact that the formula used by Hannay in the preceding Comment [J. Opt. Soc. Am. A25, 2165 (2008)] is "from a standard text on electrodynamics" neither warrants that it is universally applicable nor that it is unequivocally correct. We have explicitly shown [J. Opt. Soc. Am. A25, 543 (2008)] that, since it does not include the boundary contribution toward the value of the field, the formula in question is not applicable when the source is extended and has a distribution pattern that rotates faster than light in vacuo. The neglected boundary term in the retarded solution to the wave equation governing the electromagnetic field forms the basis of diffraction theory. If this term were identically zero, for the reasons given by Hannay, the diffraction of electromagnetic waves through apertures on a surface enclosing a source would have been impossible.  相似文献   
10.
Microsystem Technologies - A novel laterally and micro-electro-thermally actuated RF MEMS switch is presented in this paper. Despite many RF MEMS switches requiring continuous actuation voltage to...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号