首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   248篇
  免费   44篇
电工技术   4篇
综合类   1篇
化学工业   50篇
金属工艺   4篇
机械仪表   7篇
建筑科学   1篇
矿业工程   1篇
能源动力   22篇
轻工业   67篇
水利工程   2篇
石油天然气   1篇
无线电   17篇
一般工业技术   64篇
冶金工业   3篇
自动化技术   48篇
  2023年   10篇
  2022年   31篇
  2021年   52篇
  2020年   30篇
  2019年   22篇
  2018年   33篇
  2017年   23篇
  2016年   10篇
  2015年   7篇
  2014年   19篇
  2013年   13篇
  2012年   12篇
  2011年   9篇
  2010年   6篇
  2009年   4篇
  2008年   1篇
  2006年   2篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  1996年   1篇
排序方式: 共有292条查询结果,搜索用时 171 毫秒
1.
Catalysis Letters - To avoid the aggregation problem and activity loss of nickel oxide (NiO) nanoparticles (NPs) in organic reactions, NiO NPs were incorporated into TUD-1 mesoporous material....  相似文献   
2.
3.
Theoretically, tri-ammonium phosphate (NH4)3PO4 embeds considerable amount of hydrogen. Typically, the expected hydrogen release from this cheap and stable material is 73.83 mmol/gsalt if a proper catalyst is exploited in the hydrolysis reaction. In this study FexCo1?x-doped titanium oxide nanotubes are introduced as an efficient photocatalyst under solar radiation. The introduced modified titanium oxide nanotubes have been prepared in two successive steps. First, Na-doped TiO2 nanotubes were synthesized by hydrothermal treatment in presence of 10 N NaOH solution at 160 °C for 16 h. Then, doping by the proposed metals was carried out by ion exchange process in a microwave oven. X-ray photoelectron microscopy (XPS) and transmission electron microscopy (TEM) confirmed the success of the doping process and the nanotubular morphology, respectively. Study the photo characteristics indicated that the proposed metal doping shifted the band gap from UV to the visible light region as the estimated band gap energies for the as-prepared and doped nanotubes were 3.4 and 2.1 eV, respectively. Moreover, distinct enhancement for the visible light absorption capacity was observed. Accordingly, a distinguished improvement in the photocatalytic activity toward tri-ammonium phosphate hydrolysis was observed. However, the two metals content has a strong influence on the amount of the obtained hydrogen per gram of tri-ammonium phosphate salt. Numerically, the maximum obtained hydrogen was 4.0, 11.2, 11.2, 11.6, 13.4, 16.5, 17.4, 13.4 and 9.8 mmol/gsalt for the pristine TiO2, and FexCo1?x-doped TiO2 with x = 1, 0.8, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.0, respectively.  相似文献   
4.
A new double-open-cubane core Cd(II)-O-Cu(II) bimetallic ligand mixed cluster of type [Cl2Cu4Cd2(NNO)6(NN)2(NO3)2].CH3CN was made available in EtOH/CH3CN solution. The 1-hydroxymethyl-3,5-dimethylpyrazole (NNOH) and 3,5-dimethylpyrazole (NNH) act as N,O-polydentate anion ligands in coordinating the Cu(II) and Cd(II) centers. The structure of the cluster in the solid state was proved by XRD study and confirmed in the liquid state by UV-vis analysis. The XRD result supported the construction of two octahedral and one square pyramid geometries types around the four Cu(II) centers and only octahedral geometry around Cd(II) two centers. Interestingly, NNOH ligand acts as a tetra-µ3-oxo and tri-µ2-oxo ligand; meanwhile, the N-N in NNH acts as classical bidentate anion/neutral ligands. The interactions in the lattice were detected experimentally by the XRD-packing result and computed via Hirschfeld surface analysis (HSA). The UV-vis., FT-IR and Energy Dispersive X-ray (EDX), supported the desired double-open cubane cluster composition. The oxidation potential of the desired cluster was evaluated using a 3,5-DTB-catechol 3,5-DTB-quinone as a catecholase model reaction.  相似文献   
5.
The high capacity anode material is required to replace the most commonly used anode - graphite to keep up the global demand to achieve the goal. Multi-metal oxide has gained keen attention for its higher theoretical capacity and relatively stable than a single metal oxide. α-SnWO4 has a theoretical capacity of 850 mAh g?1 which is greater than graphite (372 mAh g?1). α-SnWO4 has been synthesized through low-temperature hydrothermal method using tin chloride and sodium tungstate as a precursor in acidic medium (succinic acid) at 200 °C for 12 h. The obtained product has been characterized using various analytical tools such as XRD, FT-IR, UV-DRS, BET, PL, SEM, and HR-TEM. XRD analysis shows the orthorhombic phase with a crystallite size of ~25 nm α-SnWO4has been examined as an electrode material for Li-ion battery (LIB) and displays an initial discharge capacity of 985 mAh g?1. Columbic efficiency close to 100% has been observed for 100 cycles. The stability of the electrode material was studied at different C-rates. Band-gap calculated using UV-DRS (Eg = 1.9 eV) shows that α-SnWO4 is a good candidate for photocatalytic degradation. Results of the photocatalytic experiment using methylene blue (MB) as a model pollutant in an aqueous medium shows good results. The above applications show that α-SnWO4 is multifunctional materials for diverse applications.  相似文献   
6.
ABSTRACT

Outdoor positioning systems based on the Global Navigation Satellite System have several shortcomings that have deemed their use for indoor positioning impractical. Location fingerprinting, which utilizes machine learning, has emerged as a viable method and solution for indoor positioning due to its simple concept and accurate performance. In the past, shallow learning algorithms were traditionally used in location fingerprinting. Recently, the research community started utilizing deep learning methods for fingerprinting after witnessing the great success and superiority these methods have over traditional/shallow machine learning algorithms. This paper provides a comprehensive review of deep learning methods in indoor positioning. First, the advantages and disadvantages of various fingerprint types for indoor positioning are discussed. The solutions proposed in the literature are then analyzed, categorized, and compared against various performance evaluation metrics. Since data is key in fingerprinting, a detailed review of publicly available indoor positioning datasets is presented. While incorporating deep learning into fingerprinting has resulted in significant improvements, doing so, has also introduced new challenges. These challenges along with the common implementation pitfalls are discussed. Finally, the paper is concluded with some remarks as well as future research trends.  相似文献   
7.
8.
In this work, polyethylene glycol (PEG) as a phase change material (PCM) was incorporated with palygorskite (Pal) clay to develop a novel form-stable composite PCM (F-SCPCM). The Pal/PEG(40 wt%) composite was defined as F-SCPCM and characterized using SEM/EDS, FT-IR, XRD, DSC, and TGA techniques. The DSC results revealed that the F-SCPCM has a melting temperature of 32.5°C and latent heat capacity of 64.3 J/g for thermal energy storage (TES) applications. Thermal cycling test showed that the F-SCPCM had good cycling thermal/chemical stability after 500 cycles. The TGA data proved that that both cycled and non-cycled F-SCPCMs had considerable high thermal durability. Consequently, the created F-SCPCM could be considered as an additive material for production of green construction components with TES capability. POLYM. ENG. SCI., 60:909–916, 2020. © 2020 Society of Plastics Engineers  相似文献   
9.
Magnetic Resonance Materials in Physics, Biology and Medicine - Quantitative analysis in MRI is challenging due to variabilities in intensity distributions across patients, acquisitions and...  相似文献   
10.
The photocatalytic hydrogen generation is a novel, eco-friendly and favourable method for production of green and clean energy using light energy. In this direction, we report low-temperature ionothermal method for the preparation of TiO2 nanoparticles (NPs) using methoxy ethyl methyl imidazolium tris (pentafluoroethyl) trifluoro phosphate (MOEMINtf2) as an ionic liquid (IL) at 120°C for 1 day. The synthesized nanomaterials were examined using different spectrochemical methods like UV-DRS, XRD, FT-IR, TEM, BET and TGA-DTA techniques. The mixed phase TiO2 is obtained with 81.7% of anatase and 18.3% of rutile phase by the XRD studies, and average crystallite size is found to be ∼7 nm. The stretching of Ti-O bond (∼555 cm−1) and few other bands related to ionic liquid were confirmed by FTIR spectrum. The band gap energy was observed to be ∼3.38 eV by UV-DRS analysis. TEM images reveal spherical shape with an average particles size of about 10 nm. Photocatalytic H2 generation was carried out using TiO2 NPs and observed the generation of 553 μmol h−1 g−1 via water splitting reaction. Furthermore, the prepared TiO2 NPs employed for the photocatalytic degradation of methylene blue dye (84.54%), and photoluminescence studies confirms the obtained material can be used in optoelectronic applications with green emission.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号