首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   310篇
  免费   14篇
  国内免费   3篇
电工技术   3篇
化学工业   74篇
金属工艺   7篇
机械仪表   6篇
建筑科学   7篇
能源动力   36篇
轻工业   22篇
水利工程   1篇
石油天然气   2篇
无线电   37篇
一般工业技术   78篇
冶金工业   19篇
原子能技术   4篇
自动化技术   31篇
  2023年   8篇
  2022年   10篇
  2021年   18篇
  2020年   18篇
  2019年   16篇
  2018年   18篇
  2017年   16篇
  2016年   19篇
  2015年   10篇
  2014年   7篇
  2013年   26篇
  2012年   14篇
  2011年   12篇
  2010年   17篇
  2009年   27篇
  2008年   24篇
  2007年   13篇
  2006年   5篇
  2005年   5篇
  2004年   6篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   5篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1993年   2篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1981年   1篇
  1977年   2篇
  1976年   2篇
  1968年   1篇
排序方式: 共有327条查询结果,搜索用时 31 毫秒
1.
Transition metal oxyhydroxides have been used as promising electrocatalysts for water splitting however, their catalytic activity is restricted due to low surface area and poor conductivity. Herein, we report novel composite FeOOH@ZIF-12/graphene composite as electrocatalyst for water oxidation, whereby ZIF-12 provide extra surface for the FeOOH dispersion whilst graphene act as excellent electron mediator. The composite shows a low overpotential value of 291 mV to attain a current density of 10 mA cm?2 and a low Tafel slope value of 78 mV dec?1. The catalyst offers a maximum current density of 101 mA cm?2, while it gives a turnover frequency (TOF) value of 0.031 s?1 at an overpotential of 291 mV only. The excellent activity and remarkable stability of composite is attributed to highly conductive and porous support.  相似文献   
2.
In this work, highly-pure silicon oxide nanostructures were prepared by a closed-field unbalanced magnetron plasma sputtering technique. These nanostructures were characterized by Fourier-transform infrared spectroscopy, UV-visible spectroscopy, x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray spectroscopy and atomic force microscopy in order to determine the optimum preparation conditions. Minimum particle size of 20 nm was determined for the samples prepared at an inter-electrode distance of 4 cm, Ar:O2 gas mixing ratio of 70:30, total gas pressure of 0.08 torr, discharge voltage of 2.5 kV, discharge current of 35 mA, anode temperature of 27 °C (room temperature) and cathode temperature of about 40 °C. These conditions are optimized to control the structural characteristics of such nanostructures and hence to satisfy certain requirements and purposes in spectroscopic and photonic applications of SiO2 nanostructures.  相似文献   
3.
The present work concentrates on some physical investigation of the undoped and Cr doped SnO2 thin films deposited onto precleaned glass substrates by the spray pyrolysis system. The physical properties of the undoped and Cr doped SnO2 thin films were investigated by the X-ray diffraction (XRD), atomic force electron microscope (AFM), field emission scanning electron microscope (FESEM), four-probe method and double beam spectrophotometer. The undoped and Cr doped SnO2 films display a polycrystalline nature with orthorhombic crystal structure. The linear optical constants energy gap Eg, refractive index n, absorption coefficient α, static refractive index no, oscillation energy Eo, dispersion energy Ed and the Urbach energy of the undoped and Cr doped SnO2 thin films were evaluated. The investigated films exhibit a direct energy gap and their values decrease with the increasing of Cr doping content while the Urbach energy follows a reverse behavior. On the other hand, the nonlinear optical constants (third-order nonlinear susceptibility χ(3) and nonlinear refractive index n2) have been increased with increasing the Cr doping content. Finally, it has been found that the sheet resistance and conductivity of the synthesized thin films were enhanced by increasing the Cr doping content. The 5?wt% Cr doped SnO2 thin film has a high value of the figure of merit among other films.  相似文献   
4.
In this work we demonstrate, for the first time, the use of polylactic acid (PLA) as a biodegradable host matrix for the construction of the active emissive layer of organic light‐emitting diode (OLED) devices for potential use in bioelectronics. In this preliminary study, we report a robust synthesis of two fluorescent PLA derivatives, pyrene‐PLA ( AH10 ) and perylene‐PLA ( AH11 ). These materials were prepared by the ring opening polymerisation of l ‐lactide with hydroxyalkyl‐pyrene and hydroxyalkyl‐perylene derivatives using 1,8‐diazabicyclo[5.4.0]undec‐7‐ene as catalyst. OLEDs were fabricated from these materials using a simple device architecture involving a solution‐processed single‐emitting layer in the configuration ITO/PEDOT:PSS/PVK:OXD‐7 (35%): AH10 or AH11 (20%)/TPBi/LiF/Al (ITO, indium tin oxide; PEDOT:PSS, poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonic acid); PVK, poly(vinylcarbazole); OXD‐7, (1,3‐phenylene)‐bis‐[5‐(4‐tert‐butylphenyl)‐1,3,4‐oxadiazole]; TPBi, 2,2′,2″‐(1,3,5‐benzenetriyl)tris(1‐phenyl‐1H‐benzimidazole)). The turn‐on voltage for the perylene OLED at 10 cd m–2 was around 6 V with a maximum brightness of 1200 cd m–2 at 13 V. The corresponding external quantum efficiency and device current efficiency were 1.5% and 2.8 cd A–1 respectively. In summary, this study provides proof of principle that OLEDs can be constructed from PLA, a readily available and renewable bio‐source. © 2020 The Authors. Polymer International published by John Wiley & Sons Ltd on behalf of Society of Industrial Chemistry.  相似文献   
5.
(Mg1 − xCax)2SiO4 dense ceramics (x ≥ 0.15) were prepared, and their microwave dielectric characteristics were investigated together with the structure evolution. The sintering temperature for Mg2SiO4 ceramics was reduced significantly with Ca2+substitution. (Mg1 − xCax)2SiO4 ceramics exhibited a small increase in dielectric constant (εr) correlated with increased crystallite size, and ultra-high quality factor Qf value was achieved throughout the compositional range. Temperature coefficient of resonant frequency (τf) was considerably tuned from −70 ppm/°C to −33 ppm/°C, and this improvement was deeply linked with the decreased bond valance. At x = 0.075, (Mg1 − xCax)2SiO4 ceramics exhibited the best combination of microwave dielectric characteristics: ε= 7.2, Qf = 199,800 GHz at 26 GHz, τ= −33 ppm/°C. The present ceramics could be expected as promising candidate of dielectric materials for millimeter wave applications.  相似文献   
6.
Protection of Metals and Physical Chemistry of Surfaces - Salix leaves water extract was studied for the corrosion inhibition of mild steel in H2SO4 at different temperatures. Energy dispersive...  相似文献   
7.
8.
Core–shell nanoparticles of Cu@Pt/C electrocatalysts were synthesized using various Pt:Cu atomic ratios with NaBH4 as a reducing agent. The crystal structure and surface morphology were studied using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The incorporation of copper in Cu@Pt/C electrocatalysts was found to shift all Pt diffraction planes in the negative direction with expanding the crystal lattice dimensions. The electrocatalytic activity of various Cu@Pt/C electrocatalysts was investigated using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. Cu@Pt/C electrocatalysts containing Pt:Cu atomic ratios of 1:0.5 and 1:2 showed an enhanced electrochemical performance for ethanol oxidation when related to Pt/C.  相似文献   
9.
This paper investigates the viability of using starch (ST) as a new modifier for asphalt paving materials. Different ratios of ST (2.5, 5.0, and 7.5% by weight of asphalt) were blended with 70/100 paving grade asphalt. Unmodified and modified asphalt binders were subjected to physicochemical, alkali, acid and fuel resistance tests. The performance tests including, Marshall stability, Marshall Quotient (MQ), tensile strength, tensile strength ratio, flexural strength, rutting resistance and resilient modulus (MR) were carried out on unmodified and modified stone matrix asphalt (SMA) mixtures. The analyses of test results show that the performance of ST-modified asphalt mixtures are better than conventional and styrene–butadiene–styrene (SBS)-modified mixtures. The rutting potential, moisture susceptibility and temperature susceptibility can be reduced by the inclusion of ST in the asphalt mixture. The laboratory MR values are lower than the calculated ones using the empirical equations. The results also revealed that this modifier can be used as anti-stripping agent. It also shows resistance to fuels and most common chemicals. A ST content of 5% by weight of asphalt is recommended for the improvement of the performance of asphalt concrete mixtures similar to that investigated in this study.  相似文献   
10.
This contribution presents an effective and practical three dimensional (3D) numerical model to predict the behaviour of concrete matrix reinforced with sliding metallic fibers. Considering fiber-reinforced concrete (FRC) as two-phase composite, constitutive behaviour laws of plain concrete and sliding metallic fibers were described first and then they were combined according to anisotropic damage theory to predict the mechanical behaviour of FRC. The behaviour law used for the plain concrete is based on damage and plasticity theories able to manage localized crack opening in 3D. The constitutive law of the action of sliding metallic fibers in the matrix is based on the effective stress carried by the fibers. This effective stress depends on a damage parameter related to on one hand, on the content and mechanical properties of fibers and on the other hand, on the fiber–matrix bond which itself depends on the localized crack opening. The proposed model for FRC is easy to implement in most of the finite element codes based on displacement formulation; it uses only measurable parameters like Young’s modulus, tensile and compressive strengths, fracture energies and strains at peak stress in tension and compression. A comparison between the experimental data and model results has been also provided in this paper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号