首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   3篇
综合类   1篇
化学工业   19篇
金属工艺   1篇
机械仪表   4篇
建筑科学   3篇
能源动力   8篇
轻工业   5篇
水利工程   2篇
石油天然气   4篇
无线电   3篇
一般工业技术   16篇
冶金工业   2篇
自动化技术   20篇
  2022年   2篇
  2021年   8篇
  2020年   5篇
  2019年   5篇
  2018年   15篇
  2017年   6篇
  2016年   10篇
  2015年   3篇
  2014年   7篇
  2013年   8篇
  2012年   4篇
  2011年   7篇
  2009年   2篇
  2008年   4篇
  2005年   2篇
排序方式: 共有88条查询结果,搜索用时 31 毫秒
1.
Nanofluids have been known as practical materials to ameliorate heat transfer within diverse industrial systems. The current work presents an empirical study on forced convection effects of Al2O3–water nanofluid within an annulus tube. A laminar flow regime has been considered to perform the experiment in high Reynolds number range using several concentrations of nanofluid. Also, the boundary conditions include a constant uniform heat flux applied on the outer shell and an adiabatic condition to the inner tube. Nanofluid particle is visualized with transmission electron microscopy to figure out the nanofluid particles. Additionally, the pressure drop is obtained by measuring the inlet and outlet pressure with respect to the ambient condition. The experimental results showed that adding nanoparticles to the base fluid will increase the heat transfer coefficient (HTC) and average Nusselt number. In addition, by increasing viscosity effects at maximum Reynolds number of 1140 and increasing nanofluid concentration from 1% to 4% (maximum performance at 4%), HTC increases by 18%.  相似文献   
2.
Methane/natural gas storage and delivered capacity for three different activated carbons in dry and wet conditions were measured. In all tests the temperature of the bed was maintained constant at 277.15 K and pressure was increased up to 10 MPa. Natural gas storage capacity was less than methane storage capacity in dry conditions for all the three activated carbons tested, while the gas delivery was almost the same. One of activated carbon tested (NC120) showed the possibility of hydrate forming for pressures higher than 4 MPa but the amount of gas stored still was less than the amount stored in dry conditions over the whole range of pressure. The analysis of the gas delivered at each pressure steps shows that considerable amount of heavy components do not come out from the bed even at very low pressures in both dry and wet condition tests. Repeatability of the sorption/desorption processes - vital for possible commercial/industrial use - has been examined over various cycles.  相似文献   
3.
Multi-stream automatic speech recognition (MS-ASR) has been confirmed to boost the recognition performance in noisy conditions. In this system, the generation and the fusion of the streams are the essential parts and need to be designed in such a way to reduce the effect of noise on the final decision. This paper shows how to improve the performance of the MS-ASR by targeting two questions; (1) How many streams are to be combined, and (2) how to combine them. First, we propose a novel approach based on stream reliability to select the number of streams to be fused. Second, a fusion method based on Parallel Hidden Markov Models is introduced. Applying the method on two datasets (TIMIT and RATS) with different noises, we show an improvement of MS-ASR.  相似文献   
4.
In this article,the 2-D unsteady viscous flow around two circular cylinders in a tandem arrangement is numerically simulated in order to study the characteristics of the flow in both laminar and turbulent regimes.The method applied alternatively is based on the finite volume method on a Cartesian-staggered grid.The great source term technique is employed to identify the cylinders placed in the flow field.To apply the boundary conditions,the ghost-cell technique is used.The implemented computational method is firstly validated through simulation of laminar and turbulent flows around a fixed circular cylinder.Finally,the flow around two circular cylinders in a tandem arrangement is simulated and analyzed.The flow visualization parameters,the Strouhal numbers,and drag and lift coefficients are comprehensively presented and compared for different cases in order to reveal the effect of the Reynolds number and gap spacing on the behavior of the flow.The obtained results have shown two completely distinct flow characteristics in laminar and turbulent regimes.  相似文献   
5.
A series of heterogeneous catalysts including different molar ratios of CaO/talc was synthesized to study the transesterification reaction of canola oil and methanol under different reaction conditions. Characterization and kinetic results revealed that the activity of this catalyst was enhanced due to the increase of CaO/talc molar ratio value leading to an improvement in the biodiesel production. Moreover, the effect of various parameters on the activity of the undertaken catalysts was studied in order to determine the optimum process conditions. Leaching measurements and the durability of the CaO/talc catalyst under several reaction cycles were evaluated and proved it to be a stable catalyst.  相似文献   
6.
Polyethylene terephthalate (PET) nanocomposite films were prepared by cast extrusion followed by uniaxial stretching, using chill rolls. Transmission electron microscopy (TEM) and wide angle X‐ray diffraction (WAXD) showed that the clay layers were aligned in the machine direction (MD) in the PET/clay nanocomposite (PCN) films. Differential scanning calorimetry (DSC) showed that PCN films have higher crystallinity than the neat PET films, possibly due to the nucleating role of the silicate layers. The PCN films became hazier as the clay content increased, but the film transparency remained in the acceptable range. Oxygen permeability of the PCN films decreased by 23% compared to the neat PET film. This is comparable with predictions of models proposed in the literature. Silicate incorporation brought about 20% increase in the tensile modulus, while the puncture and tear propagation resistance were reduced, due to brittleness of the PCN films. The measured modulus (1.7 GPa) was somewhat smaller than the values predicted using the Pseudoinclusion model (2.1 GPa). POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   
7.
Triaxial residual tensile stresses resulting after cooling a 3D woven composite from the curing temperature cause cracking in the resin pockets for weave architectures that have high through‐the‐thickness constraint. We show how curing cycle modifications can reduce the hydrostatic tensile stress generated by thermal mismatch during cooling of Hexcel RTM6 epoxy resin constrained in a quartz tube which simulates extreme constraint in a composite. The modified curing schedule consists of a high temperature cure to just before the glass transition, a lower temperature hold that takes the resin through the glass transition thereby freezing in the zero stress state, followed by high temperature cure to bring the resin to full conversion. We show that this process is sensitive to heating rates and can reduce the zero stress state of non‐toughened RTM6 resin to a temperature similar to a commercial rubber‐toughened resin, Cycom PR520. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43373.  相似文献   
8.
The importance of crude oil in the world economy has made it imperative for efficient models to be designed for predicting future prices. This paper proposes an alternative approach based on a time series and biogeography-based optimization (BMMR–BBO) for the estimation of the West Texas Intermediate (WTI) crude oil price. To evaluate the forecasting ability of the presented model, we compared its performance with those of time series functions. The results of the experiment showed that BMMR-BBO performed better than the other methods and is a fairly good option for crude oil price prediction. The proposed model can be useful in the formulation of policies related to international crude oil price estimations, development plans, and industrial production.  相似文献   
9.
Abundant wastewater discharges from palm oil industries in tropical nations being a valuable resource of biodiesel need proper exploration. Research hinted that such wastewater as economical nutrient source or substrate can support the cultivation of microalgae. In this experiment, we have tested the growth and lipid production of five different microalgal strains in palm oil mill effluent (POME). POME as a biofuel substrate is demonstrated to be lucrative for microalgae-assisted lipids production. POME is rich in macro- and micronutrients can be used as a growth medium for algal growth in order to reduce the growth medium cost and environmental pollutions. Among the five microalgal strains tested, Chlorella sorokiniana revealed optimum biomass and lipid production. The productivity was evaluated in terms of chlorophyll content, growth rate, biomass, and lipid content, which discerned to be 0.099/day, 8.0 mg/L day and 2.68 mg/mg cell dry weight (CDW). Furthermore, in this study, an optimization study was carried out to enhance the microalgae to produce high lipid content using carbon-to-nitrogen ratio and different light/dark periods. The presence of nitrogen combined glucose (with a carbon-to-nitrogen ratio 100:7) as an alternative source to carbon displayed higher lipid production of 2.68 (mg/mg CDW) by C. sorokiniana. This study confirms that 8:16 h light/dark condition at C:TN ratio of 100:7 supported to produce high lipid content of 17 mg lipid/mg CDW. The above results revealed that POME could be a suitable growth media for the alga C. sorokiniana to improve the maximum lipid yield for biofuels production.  相似文献   
10.
In the present paper, the unsteady, viscous, incompressible and 2-D flow around two side-by-side circular cylinders was simulated using a Cartesian-staggered grid finite volume based method. A great-source term technique was employed to identify the solid bodies (cylinders) located in the flow field and boundary conditions were enforced by applying the ghost-cell technique. Finally, the characteristics of the flow around two side-by-side cylinders were comprehensively obtained through several computational simulations. The computational simulations were performed for different transverse gap ratios (1.5≤T/D≤4) in laminar (Re=100,200) and turbulent (Re=104) regimes, where T and D are the distance between the centers of cylinders and the diameter of cylinders, respectively. The Reynolds number is based on the diameter of cylinders,D. The pressure field and vorticity distributions along with the associated streamlines and the time histories of hydrodynamic forces were also calculated and analyzed for different gap ratios. Generally, different flow patterns were observed as the gap ratio and Reynolds number varied. Accordingly, the hydrodynamic forces showed irregular variations for small gaps while they took a regular pattern at higher spacing ratios.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号