首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6411篇
  免费   628篇
  国内免费   101篇
电工技术   253篇
综合类   99篇
化学工业   1145篇
金属工艺   150篇
机械仪表   154篇
建筑科学   275篇
矿业工程   59篇
能源动力   221篇
轻工业   469篇
水利工程   122篇
石油天然气   108篇
武器工业   20篇
无线电   607篇
一般工业技术   1516篇
冶金工业   789篇
原子能技术   45篇
自动化技术   1108篇
  2024年   15篇
  2023年   156篇
  2022年   183篇
  2021年   370篇
  2020年   261篇
  2019年   228篇
  2018年   247篇
  2017年   255篇
  2016年   239篇
  2015年   212篇
  2014年   258篇
  2013年   434篇
  2012年   370篇
  2011年   449篇
  2010年   368篇
  2009年   335篇
  2008年   347篇
  2007年   277篇
  2006年   252篇
  2005年   211篇
  2004年   183篇
  2003年   162篇
  2002年   157篇
  2001年   77篇
  2000年   75篇
  1999年   69篇
  1998年   104篇
  1997年   82篇
  1996年   68篇
  1995年   74篇
  1994年   56篇
  1993年   51篇
  1992年   52篇
  1991年   32篇
  1990年   37篇
  1989年   29篇
  1988年   23篇
  1987年   43篇
  1986年   23篇
  1985年   43篇
  1984年   23篇
  1983年   15篇
  1982年   21篇
  1981年   27篇
  1980年   12篇
  1977年   14篇
  1976年   19篇
  1975年   11篇
  1974年   12篇
  1973年   12篇
排序方式: 共有7140条查询结果,搜索用时 125 毫秒
1.
2.
Metal organic frameworks (MOFs) containing zirconium secondary building units (SBUs) in UiO-67 and related MOFs, are highly active for neutralizing both the chemical warfare agents and simulants, such as dimethyl methylphosphonate (DMMP). However, two recent publications gave conflicting reports of DMMP reaction with UiO-67 under ultra high vacuum (UHV) conditions, with one reporting chemisorption and reaction (Wang et al., J Phys Chem C, 2017, 121, 11261–11272) and the other reporting only physisorption and reversible desorption (Ruffley et al., J Phys Chem C, 2019, 123, 19748–19758) from very similar temperature programmed desorption experiments. We show that the discrepancy between these experiments may be explained by different levels of missing linker defects in the UiO-67 samples. We present density functional theory calculations showing that SBU sites having two-adjacent missing linkers exhibit reaction barriers that are about 30 kJ/mol lower than SBU sites having a single missing linker. We also show that topology of the undercoordinated sites plays an important role in the reaction barrier under UHV conditions.  相似文献   
3.
A numerical model is developed for surface crack propagation in brittle ceramic coatings, aiming at the intrinsic failure of rare-earth silicate environmental barrier coating systems (EBCs) under combustion conditions in advanced gas turbines. The main features of progressive degradation of EBCs in such conditions are captured, including selective silica vaporization in the top coat due to exposure to water vapor, diffusion path-dependent bond coat oxidation, as well as crack propagation during cyclic thermal loading. In light of these features, user-defined subroutines are implemented in finite element analysis, where surface crack growth is simulated by node separation. Numerical results are validated by existing experimental data, in terms of monosilicate layer thickening, thermal oxide growth, and fracture behaviors. The experimentally observed quasi-linear oxidation in the early stage is also elucidated. Furthermore, it is suggested that surface crack undergoes rapid propagation in the late stage of extended thermal cycling in water vapor and leads to catastrophic failure, driven by both thermal mismatch and oxide growth stresses. The latter is identified as the dominant mechanism of penetration. Based on detailed analyses of failure mechanisms, the optimization strategy of EBCs composition is proposed, balancing the trade-off between mechanical compliance and erosion resistance.  相似文献   
4.
The glass transition temperature (Tg) is a key parameter to investigate for application in nuclear waste immobilization in borosilicate glasses. Tg for several glasses containing iodine (I) has been measured in order to determine the I effect on Tg. Two series of glass composition (ISG and NH) containing up to 2.5 mol% I and synthesized under high pressure (0.5 to 1.5 GPa) have been investigated using differential scanning calorimetry (DSC). The I local environment in glasses has been determined using X-ray photoelectron spectroscopy and revealed that I is dissolved under its iodide form (I). Results show that Tg is decreased with the I addition in the glass in agreement with previous results. We also observed that this Tg decrease is a strong function of glass composition. For NH, 2.5 mol% I induces a decrease of 24°C in Tg, whereas for ISG, 1.2 mol% decreases the Tg by 64°C. We interpret this difference as the result of the I dissolution mechanism and its effect on the polymerization of the boron network. The I dissolution in ISG is accompanied by a depolymerization of the boron network, whereas it is the opposite in NH. Although ISG corresponds to a standardized glass, for the particular case of I immobilization it appears less adequate than NH considering that the decrease in Tg for NH is small in comparison to ISG.  相似文献   
5.
Surface passivation treatment is a widely used strategy to resolve trap-mediated nonradiative recombination toward high-efficiency metal-halide perovskite photovoltaics. However, a lack of passivation with mixture treatment has been investigated, as well as an in-depth understanding of its passivation mechanism. Here, a systematic study on a mixed-salt passivation strategy of formamidinium bromide (FABr) coupled with different F-substituted alkyl lengths of ammonium iodide is demonstrated. It is obtained better device performance with decreasing chain length of the F-substituted alkyl ammonium iodide in the presence of FABr. Moreover, they unraveled a synergistic passivation mechanism of the mixed-salt treatment through surface reconstruction engineering, where FABr dominates the reformation of the perovskite surface via reacting with the excess PbI2. Meanwhile, ammonium iodide passivates the perovskite grain boundaries both on the surface and top perovskite bulk through penetration. This synergistic passivation engineer results in a high-quality perovskite surface with fewer defects and suppressed ion migration, leading to a champion efficiency of 23.5% with mixed-salt treatment. In addition, the introduction of the moisture resisted F-substituted groups presents a more hydrophobic perovskite surface, thus enabling the decorated devices with excellent long-term stability under a high humid atmosphere as well as operational conditions.  相似文献   
6.
The exploitation of recycled carbonaceous catalysts from renewable biomass resources such as chitin is a crucial issue for the development of the sustainable society. In this article, the chitin-based N and O doped carbon microspheres (ChC) were fabricated by a simple dissolution, sol–gel transformation, and the carbonization methods. Subsequently, the novel magnetic Ag-Fe3O4@chitin-based carbon microspheres catalyst (MChC) was successfully constructed through the in situ redox reaction. The as-prepared MChC possessed rich micropores with high-surface area, and a narrow size distribution (50–120 μm). The Ag-Fe3O4 nanoparticles were immobilized through the interaction with C, N, and O atoms in the pores of MChC. The reduction of 4-nitrophenol was applied to evaluate the catalytic activity of MChC. 4-Nitrophenol (4-NP) could be fully reduced to 4-aminophenol (4-AP) in 5 min with the catalyst MChC-45. Moreover, MChC could be collected in solution with an external magnet in 8 s and remained relatively high-catalytic activity after 10 cycle times. This work provided novel ideas for the fabrication of doped carbon material from biomass and promoted its utilization in nanocatalytic applications.  相似文献   
7.
8.
The effects of strain on the magnetic properties of Zr2N MXene have been investigated by the first-principles calculations. The ground state of strain-free Zr2N MXene is intrinsically antiferromagnetic. However, the magnetic state of Zr2N MXene tends to be ferromagnetic when the applied strain is higher than 4%. The transition of magnetic orderings from antiferromagnetism to ferromagnetism under tensile strains can be understood from the Stoner criterion. Besides, the critical temperature (Tc) is about 470 K for the strain-free Zr2N MXene, indicating that the antiferromagnetic ordering can be robust and maintained at room temperature. The Tc of antiferromagnetic states begins to decrease once the strain is exerted. As the FM ordering is favored, however, the Tc then increases with the applied strain. Under 8% tensile strain, the Tc comes to room temperature (300 K). In addition, both the orientation of easy-axis and the magnetic anisotropy energy (MAE) of Zr2N MXene fluctuate with the strain. At the strain of 2%, the MAE reaches the largest (203 μeV per Zr atom), mainly resulting from the spin-orbit interactions between occupied and unoccupied px/py states of Zr atoms. All these tunable and appealing properties make Zr2N MXene desirable for spintronic applications.  相似文献   
9.
Nerve growth conduits are designed to support and promote axon regeneration following nerve injuries. Multifunctionalized conduits with combined physical and chemical cues, are a promising avenue aimed at overcoming current therapeutic barriers. However, the efficacious assembly of conduits that promote neuronal growth remains a challenge. Here, a biomimetic regenerative gel is developed, that integrates physical and chemical cues in a biocompatible “one pot reaction” strategy. The collagen gel is enriched with magnetic nanoparticles coated with nerve growth factor (NGF). Then, through a remote magnetic actuation, highly aligned fibrillar gel structure embedded with anisotropically distributed coated nanoparticles, combining multiple regenerating strategies, is obtained. The effects of the multifunctional gels are examined in vitro, and in vivo in a 10-mm rat sciatic nerve injury model. The magneto-based therapeutic conduits demonstrate oriented and directed axonal growth, and improve nerve regeneration in vivo. The study of multifunctional guidance scaffolds that can be implemented efficiently and remotely provides the foundation to a novel therapeutic approach to overcome current medical obstacles for nerve injuries.  相似文献   
10.
Mysis diluviana is a major component of prey fish diets in the Great Lakes, so annual production of M. diluviana is important for understanding and modeling energy flow through Great Lakes food webs. However, only three lake-wide measurements of M. diluviana annual production in Lake Ontario are currently available (1971, 1990, 1995). During 2013, lake-wide coverage of Lake Ontario was achieved during four periods from April to November. Annual mean density and biomass of M. diluviana in 2013 were 99?#/m2 (SE: 8) and 318?mg?dw/m2 (SE: 28) – approximately half of values observed in 1990s. M. diluviana comprised 13–30% of offshore zooplankton biomass in each period. Reproduction peaked in fall, with mean brood size of 32 embryos (range: 11–49), at least 10% larger than in 1990s. Generation time was two years from embryo to initial reproduction. Growth rates were 0.052?mm/d for the age-0 cohort and 0.027?mm/d for the age-1 cohort. Age-0 growth rate was significantly higher than in 1980s–90s (0.035?mm/d). Annual production in 2013 was 0.85?g?dw/m2/yr (SE: 0.03) which was 30–40% of values observed in 1990 and 1995 (2.23 and 2.53?g/m2/yr). Annual production to biomass ratio (P/B) in 2013 was 2.65?/yr which was 80–85% of values observed in 1990 and 1995 (3.24 and 3.11?/yr), but this difference was not statistically significant. Our results suggest that changes in annual production over time can be estimated using changes in biomass over time and a mean P/B ratio.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号