首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1368篇
  免费   64篇
  国内免费   8篇
电工技术   19篇
综合类   1篇
化学工业   496篇
金属工艺   38篇
机械仪表   46篇
建筑科学   27篇
矿业工程   2篇
能源动力   63篇
轻工业   91篇
水利工程   10篇
石油天然气   15篇
无线电   139篇
一般工业技术   213篇
冶金工业   91篇
原子能技术   8篇
自动化技术   181篇
  2023年   19篇
  2022年   36篇
  2021年   61篇
  2020年   37篇
  2019年   33篇
  2018年   68篇
  2017年   56篇
  2016年   51篇
  2015年   43篇
  2014年   55篇
  2013年   102篇
  2012年   74篇
  2011年   69篇
  2010年   69篇
  2009年   59篇
  2008年   56篇
  2007年   43篇
  2006年   29篇
  2005年   27篇
  2004年   22篇
  2003年   21篇
  2002年   26篇
  2001年   15篇
  2000年   10篇
  1999年   15篇
  1998年   33篇
  1997年   14篇
  1996年   19篇
  1995年   14篇
  1994年   10篇
  1993年   20篇
  1992年   14篇
  1991年   10篇
  1990年   11篇
  1989年   14篇
  1988年   8篇
  1987年   10篇
  1986年   16篇
  1985年   7篇
  1984年   16篇
  1983年   15篇
  1982年   14篇
  1981年   15篇
  1980年   19篇
  1979年   9篇
  1978年   7篇
  1977年   7篇
  1976年   11篇
  1975年   5篇
  1972年   6篇
排序方式: 共有1440条查询结果,搜索用时 17 毫秒
1.
In this study, MgO nanoparticles were successfully fabricated and incubated inside ZnO NPs to form MgO/ZnO nanocomposite for biomedical applications. The x-ray diffraction analysis of MgO, ZnO, and MgO/ZnO has shown the single-phase x-ray diffraction patterns through X'pert High score. The crystallite sizes were calculated as 18 nm, 42 nm, and 53 nm, respectively. The average particle size of MgO, ZnO, and MgO/ZnO nanopowders depicted from secondary electron images of field emission electron microscopy were 56 nm, 400 nm, and 450 nm, respectively. The presence of MgO NPs inside ZnO NPs was confirmed by transmission electron microscopy. The elemental dispersive spectroscopy of MgO, given the peaks of oxygen and magnesium, also showed only zinc and oxygen peaks in ZnO, which confirms no other impurities in MgO and ZnO powders. The elemental analysis of MgO/ZnO nanocomposite showed the peaks of Zinc and Oxygen, along with a tiny peak of Mg. The photoluminescence and UV–vis spectroscopy revealed the absorbance fluorescence limit of the nanomaterials. Fourier transform infrared spectroscopy confirmed the several groups present in the nanocomposite. The biocompatibility of MgO, ZnO, and MgO/ZnO was observed with human peripheral blood mononuclear cells. The cytotoxicity studies were also performed against human cancer (liver and breast) cell lines. The MgO, ZnO, and MgO/ZnO exhibited the antimicrobial properties against Escherichia coli and Staphylococcus aureus.  相似文献   
2.
This article presents a hands‐off control design for discrete‐time nonlinear system with a special type of nonlinear sector termed as “discrete‐time sector.” The design method to define the boundary of a discrete‐time sector is done with control‐Lyapunov function. The generalization of nonlinear system is viewed in the perspective of a comparison function. By means of a proposed sector, a switching control is designed such that no control action is experienced inside the sector thus, saving unnecessary control efforts. However, to study the robustness for discrete‐time system, a hands‐off control is modified to ensure the monotonic decrease in the energy of the system. Finally, the proposed approach is verified with the simulation results.  相似文献   
3.
In this paper, we consider the classical finite mixture model, which is an effective tool for modeling lifetime distributions for random samples from heterogeneous populations. We discuss new results on stochastic comparison for two finite mixtures when each of them is drawn from one of the following semiparametric families, i.e., proportional hazards, accelerated lifetime and proportional reversed hazards.  相似文献   
4.
5.
In the present investigation, La1-xCoxCr1-yFeyO3 (x,y = 0.0, 0.12, 0.36, 0.60) perovskite was fabricated via a facile micro-emulsion route. The synthesized perovskites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) techniques to examine the effect of Co and Fe ions on the physico-chemical properties. The ferroelectric, dielectric, and magnetic properties of La1-xCoxCr1-yFeyO3 were changed significantly as a function of dopants contents (Co and Fe ions). Outcomes revealed that the dielectric, ferroelectric and magnetic properties of LaCrO3 perovskite can be tuned significantly via Co and Fe doping and La0.40Co0.60Cr0.40Fe0.60O3 have potential for photocatalytic dye removal under (visible) light expoure. The photocatalytic activity (PCA) of the pristine LaCrO3 and La0.40Co0.60Cr0.40Fe0.60O3 photocatalyst was evaluated under (visible) light irradiation for crystal violet (CV) dye. Experimental results revealed that La0.40Co0.60Cr0.40Fe0.60O3 photocatalyst degrdae almost 77.21% CV dye with the rate constant value of 0.01475 min?1. In the presence of isopropyl alcohol (IPA) scavenger, the PCA of the La0.40Co0.60Cr0.40Fe0.60O3 photocatalyst and rate constant value of the photocatalytic reaction decreased to 32.5% and 0.00491 min?1, suggesting the superoxide as main active specie. Results revealed that Co and Fe doping doped material is efficient for photocatalytic presentations under solar light expoure.  相似文献   
6.
The chief intent of this review is to explain the different extraction techniques and efficiencies for the recovery of protein from food waste (FW) sources. Although FW is not a new concept, increasing concerns about chronic hunger, nutritional deficiency, food security, and sustainability have intensified attention on alternative and sustainable sources of protein for food and feed. Initiatives to extract and utilize protein from FW on a commercial scale have been undertaken, mainly in the developed countries, but they remain largely underutilized and generally suited for low-quality products. The current analysis reveals the extraction of protein from FW is a many-sided (complex) issue, and that identifies for a stronger and extensive integration of diverse extraction perspectives, focusing on nutritional quality, yield, and functionality of the isolated protein as a valued recycled ingredient.  相似文献   
7.
Using black coatings and materials with high light absorbance that are capable of absorbing photons at visible and longer wavelengths is a very effective way to reduce unwanted stray light, also known as optical noise, within optical equipment. These lights can be greatly reduced to a reasonable level by functional and performable black coatings that are modified to absorb incident light as much as possible by their specific pigments. In the present work, several carbonaceous pigments were synthesized for the first time from wasteful materials and their optical properties in the visible and near‐infrared ranges studied. First, MCM‐48 and SBA‐15 were synthesized at different conditions and were then used as templates for carbonaceous products. SSS‐1 (the carbonic pigment synthesized by the mixture of sucrose and sodium silicate), SSS‐2 (the carbonic pigment synthesized by the mixture of sawdust and sodium silicate), and mesoporous carbon pigments (CMK‐3 and CMK‐1 with different levels of saturations) were synthesized. Finally, their structure, morphology, and optical properties were investigated by X‐ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FE‐SEM), and Diffuse Reflectance Spectroscopy (DRS). The results indicated that the SSS‐1 pigment had a lower reflectance (below 1%) than carbon black (about 2.5%) in the visible region despite it being more cost‐effective than carbon black. The mesoporous pigments showed very high light absorbance in the visible region (about 2.5%). Compared with other black pigments, the CMK‐1 was the blackest synthesized material with a very low reflectance (about 0.05% in visible region), making it an ideal candidate as a super black pigment for reducing unwanted stray light within optical equipment.  相似文献   
8.
In this article, the authors design a new clean storage device for a photovoltaic system (PV) reinforced by the electrical grid. The photovoltaic system supplies power to a DC load. When the power of the photovoltaic source is insufficient, the electrical grid compensates the energy deficit. On the other hand, if the load is satisfied and the PV source is still able of supplying energy, the energy excess is diverted to an own storage unit materialized by an electrolysis which produces gaseous hydrogen by the process of electrolysis of water. The authors show that the quantity of hydrogen produced is proportional to the photovoltaic energy excess and also to the flow of water injected into the electrolysis. In this case, it is a question of designing an electrolysis with specific characteristics, which takes into account the quantity of energy excess and the flow of water injected into it. The authors abandon the idea of controlling the water flow by means of a pumping-electrovalve system, and initiate the idea of replacing the function of the pump by the action of gravity. The work focuses on the development of an electrolysis optimization approach using the water flow control in its alliance with the PV power excess which is also maximized. For an optimized use of the global system (load and electrolysis), the authors present an architecture based on energy-converting structures (DC/DC and AC/DC). In addition, to increase the reliability and safety of the system, the authors finish by developing a power management strategy (PMS) in the designed system. This power management strategy organizes the energy flow and selects the appropriate path of this flow between the two energy sources (PV and electrical grid) and the two possible energy receivers (load and electrolysis). A complete modeling of the system is developed in the Matlab/Simulink environment. The simulation results show that the hybrid system (PV and electrical grid) is able to permanently supplying the load and potentially storing the excess of the PV energy in the form of hydrogen gas.  相似文献   
9.
10.
In this paper, the thermoelectric performance of porous armchair graphene nanoribbons under tensile and compressive strain is investigated as a function of pore morphology and temperature. For all the porous structures irrespective of their pore size, the performance improves at a compressive strain of 10%, while for tensile nature, the minimum cut-off strain required for improved thermoelectric figure of merit (ZT) shows an inverse relation with the pore size. In addition, optimal pore shape geometry can yield better performance, even at lower values of strain. Further analysis reveals that tensile strain is not able to improve the performance at low and intermediate temperatures of around 300 K, whereas tensile/compressive strain is effective in enhancing the performance of porous armchair graphene nanoribbons at higher temperatures. Furthermore, the structures are found to be more sensitive to compressive strain than the tensile one since the effect of compressive strain is found to improve ZT more significantly. Our analysis based on Non-Equilibrium Green’s function calculations suggests a possible route for tailoring the functionality of nanomaterials so as to achieve great potentials for thermoelectric applications at various temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号