首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96823篇
  免费   1398篇
  国内免费   444篇
电工技术   969篇
综合类   2328篇
化学工业   13305篇
金属工艺   5029篇
机械仪表   3327篇
建筑科学   2662篇
矿业工程   584篇
能源动力   1367篇
轻工业   5325篇
水利工程   1369篇
石油天然气   371篇
无线电   10645篇
一般工业技术   18190篇
冶金工业   5821篇
原子能技术   420篇
自动化技术   26953篇
  2022年   63篇
  2021年   193篇
  2020年   137篇
  2019年   194篇
  2018年   14634篇
  2017年   13546篇
  2016年   10196篇
  2015年   765篇
  2014年   550篇
  2013年   875篇
  2012年   3647篇
  2011年   10006篇
  2010年   8742篇
  2009年   6004篇
  2008年   7279篇
  2007年   8262篇
  2006年   558篇
  2005年   1641篇
  2004年   1460篇
  2003年   1506篇
  2002年   846篇
  2001年   399篇
  2000年   460篇
  1999年   377篇
  1998年   1059篇
  1997年   651篇
  1996年   499篇
  1995年   368篇
  1994年   306篇
  1993年   316篇
  1992年   183篇
  1991年   164篇
  1990年   154篇
  1989年   150篇
  1988年   151篇
  1987年   109篇
  1986年   117篇
  1985年   162篇
  1984年   114篇
  1983年   98篇
  1982年   76篇
  1981年   102篇
  1980年   96篇
  1979年   92篇
  1977年   116篇
  1976年   161篇
  1973年   61篇
  1968年   66篇
  1955年   66篇
  1954年   69篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
1.
Mesoscale order can lead to emergent properties including phononic bandgaps or topologically protected states. Block copolymers offer a route to mesoscale periodic architectures, but their use as structure directing agents for metallic materials has not been fully realized. A versatile approach to mesostructured metals via bulk block copolymer self-assembly derived ceramic templates, is demonstrated. Molten indium is infiltrated into mesoporous, double gyroidal silicon nitride templates under high pressure to yield bulk, 3D periodic nanocomposites as free-standing monoliths which exhibit emergent quantum-scale phenomena. Vortices are artificially introduced when double gyroidal indium metal behaves as a type II superconductor, with evidence of strong pinning centers arrayed on the order of the double gyroid lattice size. Sample behavior is reproducible over months, showing high stability. High pressure infiltration of bulk block copolymer self-assembly based ceramic templates is an enabling tool for studying high-quality metals with previously inaccessible architectures, and paves the way for the emerging field of block-copolymer derived quantum metamaterials.  相似文献   
2.
Among a variety of solar cell types, thin-film solar cells have been rigorously investigated as cost-effective and efficient solar cells. In many cases, flexible solar cells are also fabricated as thin films and undergo frequent stress due to the rolling and bending modes of applications. These frequent motions result in crack initiation and propagation (including delamination) in the thin-film solar cells, which cause degradation in efficiency. Reliability evaluation of solar cells is essential for developing a new type of solar cell. In this paper, we investigated the effect of layer delamination and grain boundary crack on 3D thin-film solar cells. We used finite element method simulation for modeling of both electrical performance and cracked structure of 3D solar cells. Through simulations, we quantitatively calculated the effect of delamination length on 3D copper indium gallium diselenide (CIGS) solar cell performance. Moreover, it was confirmed that the grain boundary of CIGS could improve the solar cell performance and that grain boundary cracks could decrease cell performance by altering the open circuit voltage. In this paper, the investigated material is a CIGS solar cell, but our method can be applied to general polycrystalline solar cells.  相似文献   
3.
Benchmarking is a tool available to furnace operators to evaluate their tap-hole life-cycle management practices against those of their peers. It allows furnace operators to challenge their own practices in order to increase furnace utilization. To facilitate the benchmarking process, it is necessary to define the variables to be considered and how they relate to one another. This article develops, from the literature and industry interviews, a holistic conceptualization of the variables that form part of tap-hole lifecycle management and performance. Specifically, the article focuses on the variables related to coke-bed-based processes (FeCr, SiMn, and HCFeMn) applying SAF technology of circular design.  相似文献   
4.
Antimony and bismuth recovery from copper electrorefining electrolyte could reduce the impacts of these problem elements and produce a new primary source for them. Two proprietary phosphonic acid ester extractants were examined (REX-1 and REX-2) for the removal of antimony and bismuth from copper electrorefining electrolytes. Experimentation included shakeout and break tests to determine the basic parameters for the extractants in terms of maximum loading, break times, and extraction and stripping efficiency. Five permutations of extractant mixtures (100 wt.% REX-1 and 25 wt.%, 50 wt.%, 75 wt.% and 100 wt.% REX-2) were studied. It was determined that REX-2 was able to extract Sb and Bi from the electrolyte, but required some mixture with REX-1 to better facilitate stripping with 400 g/L sulfuric acid. The laboratory electrorefining electrolyte containing glue had faster disengagement times than a synthetic solution without glue.  相似文献   
5.
Thermal barrier coatings (TBCs) are used to protect the hot sections of gas turbine engines and airplane engines. A TBC system comprises a substrate, bond coat, and TBC topcoat. The development of an accurate method for determining the Young’s modulus and Poisson’s ratio of TBC using a multilayered specimen is of importance. In this study, we applied the bending theory of a laminated plate to a three-layered material and proposed models to determine the Young’s modulus and Poisson’s ratio of the TBC layer using the bending strain of the TBC system specimen. Three methods were developed by utilizing (i) the coating biaxial strain, (ii) substrate biaxial strain, or (iii) coating and substrate biaxial strains. Subsequently, we determined appropriate dimensions of the specimen and span by using three-dimensional finite element analysis, and numerically verified the usefulness of the three proposed methods. However, the Young’s modulus and Poisson’s ratio determined using the multilayered specimen with a substrate are sensitive to experimental errors. Therefore, we evaluated the sensitivity of the three proposed methods to experimental error, and we determined the most insensitive method among them. Finally, we experimentally demonstrated the usefulness of this method.  相似文献   
6.
Triangulation of the Ag-Hg-Se-I system in the vicinity of quaternary phase Ag4HgSe2I2 was performed by differential thermal analysis, X-ray diffraction and electromotive force (EMF) methods. The spatial position of the phase region Ag4HgSe2I2-Se-HgI2 regarding the figurative point of silver was used to write the chemical reaction of formation of Ag4HgSe2I2. The EMF measurements were carried out by applying an electrochemical cell: (–) C|Ag|Ag2GeS3 glass|Ag4HgSe2I2, HgI2, Se|C (+), where C is graphite and Ag2GeS3 glass is the fast purely Ag+ ions conducting electrolyte. The linear dependence of the EMF of the electrochemical cell on temperature was used to determine the standard thermodynamic values of Ag4HgSe2I2 for the first time.  相似文献   
7.
Some alloying elements (Al, Er, Gd, Li, Mn, Sn, Y, Zn) were proved recently by calculations or experiments to improve the formability of Mg alloys, but ignoring their site preference in Mg crystals during the calculated process. A crystallographic model was built via first principle calculations to predict the site preferences of these elements. Regularities between doping elements and site preferences were summarized. Meanwhile, in the basis of the crystallographic model, a series of formulas were deduced combining the diffraction law. It predicted that a crystal plane with abnormal XRD peak intensity of the Mg-based solid solutions, compared to that of the pure Mg, prefers to possess solute atoms. Thus, three single-phase solid solution alloys were then prepared through an original In-situ Solution Treatment, and their XRD patterns were compared. Finally, the experiment further described the site preferences of these solute atoms in Mg crystal, verifying the calculation results.  相似文献   
8.
A novel additive manufacturing method with TIG–MIG hybrid heat source was applied for fabricating 5356 aluminum alloy component. In this paper the microstructure evolution, mechanical properties and fracture morphologies of both as-deposited and heat-treated component were investigated, and how these were affected by different heat-treated temperature. The as-deposited microstructure showed dominant equiaxed grains with second phase, and the size of them is coarse in the bottom region, medium in the middle region and fine in the top region owing to different thermal cycling conditions. Compared with as-deposited microstructure, the size of grain becomes large and second phases gradually dissolve in the matrix as heat-treated temperature increase. Different microstructures determine the mechanical properties of component. Results show that average ultimate tensile strength enhances from 226 to 270 MPa and average microhardness increases from 64.2 to 75.3 HV0.1 but ductility decreases from 33 to 6.5% with heat-treated temperature increasing. For all components, the tensile properties are almost the same in the vertical direction (Z) and horizontal direction (Y) due to equiaxed grains, which exhibits isotropy, and the mechanisms of these are analyzed in detailed. In general, the results demonstrate that hybrid arc heat source has the potential to fabricate aluminum alloy component.  相似文献   
9.
Spectrum sensing is the important function of cognitive radio and energy detection is the most popular technique used for spectrum sensing. Detection of the availability of unused spectrum for the secondary user becomes difficult when the channel is affected by composite multipath/shadowed fading. In this paper, the performance analysis of an Energy Detector in Hoyt/gamma composite fading channel with Maximum Ratio Combining employing micro-diversity is analyzed. Analytical expressions for performance parameters, i.e., the average probability of detection and the average area under the receiver operating characteristics curve are evaluate. The effect of diversity on the performance of energy detector is also studied. Monte-Carlo simulation results have verified the accuracy of the proposed analysis.  相似文献   
10.
The selection of the best-fit-for-purpose analytical method to be implemented in the laboratory is difficult due to availability of multiple methods, targets, aims of detection, and different kinds and sources of more or less reliable information. Several factors, such as method performance, practicability, cost of setup, and running costs need to be considered together with personnel training when selecting the most appropriate method. The aim of our work was to prepare a flexible multicriteria decision analysis model suitable for evaluation and comparison of analytical methods used for the purpose of detecting and/or quantifying genetically modified organisms, and to use this model to evaluate a variety of changing analytical methods. Our study included selection of PCR-, isothermal-, protein-, microarray-, and next-generation sequencing-based methods in simplex and/or multiplex formats. We show that the overall result of their fitness for purpose is relatively similar; however, individual criteria or a group of related criteria exposed more substantial differences between the methods. The proposed model of this decision support system enables easy modifications and is thus suitable for any other application of complex analytical methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号