首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
化学工业   2篇
建筑科学   1篇
轻工业   1篇
水利工程   1篇
无线电   1篇
一般工业技术   7篇
冶金工业   2篇
自动化技术   5篇
  2016年   2篇
  2014年   2篇
  2013年   2篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1992年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有20条查询结果,搜索用时 0 毫秒
1.
Existing and emerging methods in computational mechanics are rarely validated against problems with an unknown outcome. For this reason, Sandia National Laboratories, in partnership with US National Science Foundation and Naval Surface Warfare Center Carderock Division, launched a computational challenge in mid-summer, 2012. Researchers and engineers were invited to predict crack initiation and propagation in a simple but novel geometry fabricated from a common off-the-shelf commercial engineering alloy. The goal of this international Sandia Fracture Challenge was to benchmark the capabilities for the prediction of deformation and damage evolution associated with ductile tearing in structural metals, including physics models, computational methods, and numerical implementations currently available in the computational fracture community. Thirteen teams participated, reporting blind predictions for the outcome of the Challenge. The simulations and experiments were performed independently and kept confidential. The methods for fracture prediction taken by the thirteen teams ranged from very simple engineering calculations to complicated multiscale simulations. The wide variation in modeling results showed a striking lack of consistency across research groups in addressing problems of ductile fracture. While some methods were more successful than others, it is clear that the problem of ductile fracture prediction continues to be challenging. Specific areas of deficiency have been identified through this effort. Also, the effort has underscored the need for additional blind prediction-based assessments.  相似文献   
2.
Lead (Pb)-free, low melting temperature solders are required for step-soldering processes used to assemble micro-electrical mechanical system (MEMS) and optoelectronic (OE) devices. Stress–strain and creep studies, which provide solder mechanical properties for unified creep-plasticity (UCP) predictive models, were performed on the Pb-free 97In–3Ag (wt.%) and 58In–42Sn solders and counterpart Pb-bearing 80In–15Pb–5Ag and 70In–15Sn–9.6Pb–5.4Cd alloys. Stress–strain tests were performed at 4.4 × 10?5 s?1 and 8.8 × 10?4 s?1. Stress–strain and creep tests were performed at ?25, 25, 75, and 100°C or 125°C. The samples were evaluated in the as-fabricated and post-annealed conditions. The In–Ag solder had yield stress values of 0.5–8.5 MPa. The values of ΔH for steady-state creep were 99 ± 14 kJ/mol and 46 ± 11 kJ/mol, indicating that bulk diffusion controlled creep in the as-fabricated samples (former) and fast-diffusion controlled creep in the annealed samples (latter). The In–Sn yield stresses were 1.0–22 MPa and were not dependent on an annealed condition. The steady-state creep ΔH values were 55 ± 11 kJ/mol and 48 ± 13 kJ/mol for the as-fabricated and annealed samples, respectively, indicating the fast-diffusion controlled creep for the two conditions. The UCP constitutive models were derived for the In–Ag solder in the as-fabricated and annealed conditions.  相似文献   
3.
This review focuses on the contributions of modern mass spectrometry to neuropeptide research. An introduction to newer mass spectrometric techniques is provided. Also, the use of mass spectrometry in combination with high-resolution separation techniques for neuropeptide identification in biological samples is illustrated. The amino acid sequence information that is important for the identification and analysis of known, novel, or chemically modified neuropeptides may be obtained using mass spectrometric techniques. Because mass spectrometry techniques can be used to reflect the dynamic properties associated with neuropeptide processing in biological systems, they may be used in the future to monitor peptide profiles within organisms in response to environmental challenges such as disease and stress.  相似文献   
4.
5.
The culture of multipotent mesenchymal stem cells on natural biopolymers holds great promise for treatments of connective tissue disorders such as osteoarthritis. The safety and performance of such therapies relies on the systematic in vitro evaluation of the developed stem cell-biomaterial constructs prior to in vivo implantation. This study evaluates bacterial cellulose (BC), a biocompatible natural polymer, as a scaffold for equine-derived bone marrow mesenchymal stem cells (EqMSCs) for application in bone and cartilage tissue engineering. An equine model was chosen due to similarities in size, load and types of joint injuries suffered by horses and humans. Lyophilized and critical point dried BC hydrogel scaffolds were characterized using scanning electron microscopy (SEM) to confirm nanostructure morphology which demonstrated that critical point drying induces fibre bundling unlike lyophilisation. EqMSCs positively expressed the undifferentiated pluripotent mesenchymal stem cell surface markers CD44 and CD90. The BC scaffolds were shown to be cytocompatible, supporting cellular adhesion and proliferation, and allowed for osteogenic and chondrogenic differentiation of EqMSCs. The cells seeded on the BC hydrogel were shown to be viable and metabolically active. These findings demonstrate that the combination of a BC hydrogel and EqMSCs are promising constructs for musculoskeletal tissue engineering applications.  相似文献   
6.
An expression for the coarsening rate of the Pb-rich phase particles was determined through isothermal aging experiments and comparative literature data as:
where λo and λ are the initial and final mean Pb-rich particle diameters, respectively (mm); T is temperature (°K); t is time (s); and dγ/dt is the strain rate (s−1). The phase coarsening behavior showed good agreement with previous literature data from isothermal aging experiments. The power-law exponent, p, for the Pb-rich phase size coarsening kinetics:
increased from a value of 3.3 at the low aging temperature regime (70–100°C) to a value of 5.1 at the high temperature regime (135–170°C), suggesting that the number of short-circuit diffusion paths had increased with further aging. This expression provides an important basis for the microstructurally-based, constitutive equation used in the visco-plastic model for TMF in Sn-Pb solder. The revised visco-plastic model was exercised using a through-hole solder joint configuration. Initial data indicate a satisfactory compatibility between the coarsening expression and the constitutive equation.  相似文献   
7.
Given a set of nodes in a distributed system, a coterie is a collection of subsets of the set of nodes such that any two subsets have a nonempty intersection and are not properly contained in one another. A subset of nodes in a coterie is called a quorum. An algorithm, called the join algorithm, which takes nonempty coteries as input, and returns a new, larger coterie called a composite coterie is introduced. It is proved that a composite coterie is nondominated if and only if the input coteries are nondominated. Using the algorithm, dominated or nondominated coteries may be easily constructed for a large number of nodes. An efficient method for determining whether a given set of nodes contains a quorum of a composite coterie is presented. As an example, tree coteries are generalized using the join algorithm, and it is proved that tree coteries are nondominated. It is shown that the join algorithm may be used to generate read and write quorums which may be used by a replica control protocol  相似文献   
8.
Few agricultural producers utilize the true analytical power of GIS and computer simulation models, partly because the loose linkages developed to-date between GIS and most public-domain modeling software are extremely cumbersome to use. The integrated system (EPIC–View) developed in the study allows the integration of a comprehensive hydrologic–crop management model (EPIC) with a desktop GIS to function as a planning tool aimed at implementing sustainable farm management practices. The use of GIS makes possible the integration of diverse spatial data into a comprehensive spatial database. EPIC–View is applied to simulate nitrogen (N) dynamics under conventional and minimum tillage conditions of a field located in Caddo County, Oklahoma. In general, the overall N balance obtained under minimum tillage is better than the balance obtained under conventional tillage over a 5-year model run. Unexplained losses of N averaged 9.55% and 4.2% of the gain in N under conventional and minimum tillage respectively. The integrated modeling system holds immense potential as a farm management tool. Various components of a sustainable agricultural system including irrigation management, crop management, soil management, and pest management, can be efficiently managed. This approach could make farms more economically viable and ecologically sound.  相似文献   
9.
A new stress finite element for analysis of shell structures of arbitrary geometry and loading has been introduced in Ref. [1]. The purpose of the present paper is to demonstrate the versatility of the proposed element with respect to all kinds of shell structures.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号