首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
自动化技术   4篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
排序方式: 共有4条查询结果,搜索用时 10 毫秒
1
1.
Conventional data warehouses employ the query-at-a-time model, which maps each query to a distinct physical plan. When several queries execute concurrently, this model introduces contention and thrashing, because the physical plans??unaware of each other??compete for access to the underlying I/O and computation resources. As a result, while modern systems can efficiently optimize and evaluate a single complex data analysis query, their performance suffers significantly and can be highly erratic when multiple complex queries run at the same time. We present in this paper Cjoin, a new design that substantially improves throughput in large-scale data analytics systems processing many concurrent join queries. In contrast to the conventional query-at-a-time model our approach employs a single physical plan that shares I/O, computation, and tuple storage across all in-flight join queries. We use an ??always on?? pipeline of non-blocking operators, managed by a controller that continuously examines the current query mix and optimizes the pipeline on the fly. Our design enables data analytics engines to scale gracefully to large data sets, provide predictable execution times, and reduce contention. We implemented Cjoin as an extension to the PostgreSQL DBMS. This prototype outperforms conventional commercial systems by an order of magnitude for tens to hundreds of concurrent queries.  相似文献   
2.
A relational ranking query uses a scoring function to limit the results of a conventional query to a small number of the most relevant answers. The increasing popularity of this query paradigm has led to the introduction of specialized rank join operators that integrate the selection of top tuples with join processing. These operators access just “enough” of the input in order to generate just “enough” output and can offer significant speed-ups for query evaluation. The number of input tuples that an operator accesses is called the input depth of the operator, and this is the driving cost factor in rank join processing. This introduces the important problem of depth estimation, which is crucial for the costing of rank join operators during query compilation and thus for their integration in optimized physical plans. We introduce an estimation methodology, termed deep, for approximating the input depths of rank join operators in a physical execution plan. At the core of deep lies a general, principled framework that formalizes depth computation in terms of the joint distribution of scores in the base tables. This framework results in a systematic estimation methodology that takes the characteristics of the data directly into account and thus enables more accurate estimates. We develop novel estimation algorithms that provide an efficient realization of the formal deep framework, and describe their integration on top of the statistics module of an existing query optimizer. We validate the performance of deep with an extensive experimental study on data sets of varying characteristics. The results verify the effectiveness of deep as an estimation method and demonstrate its advantages over previously proposed techniques.  相似文献   
3.
The core logic of web applications that suggest some particular service, such as online shopping, e-commerce etc., is typically captured by Business Processes (BPs). Among all the (maybe infinitely many) possible execution flows of a BP, analysts are often interested in identifying flows that are “most important”, according to some weight metric. The goal of the present paper is to provide efficient algorithms for top-k query evaluation over the possible executions of Business Processes, under some given weight function. Unique difficulties in top-k analysis in this settings stem from (1) the fact that the number of possible execution flows of a given BP is typically very large, or even infinite in presence of recursion and (2) that the weights (e.g., likelihood, monetary cost, etc.) induced by actions performed during the execution (e.g., product purchase) may be inter-dependent (due to probabilistic dependencies, combined discount deals etc.). We exemplify these difficulties, and overcome them to provide efficient algorithms for query evaluation where possible. We also describe in details an application prototype that we have developed for recommending optimal navigation in an online shopping web site that is based on our model and algorithms.  相似文献   
4.
Meshing Streaming Updates with Persistent Data in an Active Data Warehouse   总被引:1,自引:0,他引:1  
Active data warehousing has emerged as an alternative to conventional warehousing practices in order to meet the high demand of applications for up-to-date information. In a nutshell, an active warehouse is refreshed online and thus achieves a higher consistency between the stored information and the latest data updates. The need for online warehouse refreshment introduces several challenges in the implementation of data warehouse transformations, with respect to their execution time and their overhead to the warehouse processes. In this paper, we focus on a frequently encountered operation in this context, namely, the join of a fast stream 5" of source updates with a disk-based relation R, under the constraint of limited memory. This operation lies at the core of several common transformations such as surrogate key assignment, duplicate detection, or identification of newly inserted tuples. We propose a specialized join algorithm, termed mesh join (MESHJOIN), which compensates for the difference in the access cost of the two join inputs by 1) relying entirely on fast sequential scans of R and 2) sharing the I/O cost of accessing R across multiple tuples of 5". We detail the MESHJOIN algorithm and develop a systematic cost model that enables the tuning of MESHJOIN for two objectives: maximizing throughput under a specific memory budget or minimizing memory consumption for a specific throughput. We present an experimental study that validates the performance of MESHJOIN on synthetic and real-life data. Our results verify the scalability of MESHJOIN to fast streams and large relations and demonstrate its numerous advantages over existing join algorithms.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号