首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2366篇
  免费   177篇
  国内免费   21篇
电工技术   60篇
综合类   12篇
化学工业   590篇
金属工艺   75篇
机械仪表   113篇
建筑科学   59篇
矿业工程   2篇
能源动力   149篇
轻工业   242篇
水利工程   43篇
石油天然气   21篇
武器工业   2篇
无线电   183篇
一般工业技术   470篇
冶金工业   103篇
原子能技术   18篇
自动化技术   422篇
  2024年   5篇
  2023年   72篇
  2022年   124篇
  2021年   206篇
  2020年   156篇
  2019年   181篇
  2018年   192篇
  2017年   158篇
  2016年   160篇
  2015年   110篇
  2014年   131篇
  2013年   206篇
  2012年   150篇
  2011年   135篇
  2010年   90篇
  2009年   97篇
  2008年   58篇
  2007年   57篇
  2006年   43篇
  2005年   22篇
  2004年   14篇
  2003年   20篇
  2002年   16篇
  2001年   7篇
  2000年   13篇
  1999年   13篇
  1998年   33篇
  1997年   16篇
  1996年   9篇
  1995年   11篇
  1994年   19篇
  1993年   6篇
  1992年   7篇
  1991年   5篇
  1990年   2篇
  1989年   1篇
  1987年   3篇
  1986年   1篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1968年   1篇
排序方式: 共有2564条查询结果,搜索用时 15 毫秒
1.
In the present study, hexagonal boron nitride (h-BN) was synthesized from boric acid and melamine by thermal annealing method in a nitrogen atmosphere. The pure h-BN was used as an efficient sorbent for the uptake of Cd2+ ions from the solution phase. The kinetics and sorption studies of metal ions onto the h-BN were carried out in batch adsorption experiments at different temperature, time, pH, sorbent dosage, and concentration of metal ions. The optimum pH for the removal of the Cd2+ ions was found to be pH 7. The effect of temperature showed that the process of Cd2+ sorption remained endothermic in the range of 298 K–328 K. The Lagergren's first and Ho's second kinetic models were tested to interpret the adsorption kinetic data, however the present data was explained well by Ho's model for kinetics. The thermodynamic perameters ΔG, ΔS and ΔH were determined using the available adsorption data at different temperatures. The physicochemical properties of the synthesized product were also characterized before and after adsorption by different analytical techniques like FT-IR, TGA, XRD and Point of Zero Charge (PZC). The morphology of the surface was analyzed with the help of Scanning Electron Microscopy. The h-BN proved to be an efficient adsorbent for the uptake of the Cd2+ ions from aqueous media.  相似文献   
2.
Porous bony scaffolds are utilized to manage the growth and migration of cells from adjacent tissues to a defective position. In the current investigation, the effect of titanium oxide (TiO2) nanoparticles on mechanical and physical properties of porous bony implants made of polymeric polycaprolactone (PCL) is studied. The bio-nanocomposite scaffolds are prepared with composition of nanocrystalline hydroxyapatite (HA) and TiO2 powder using the freeze-drying technique for different weight fractions of TiO2 (0 wt%, 5 wt%, 10 wt%, and 15 wt%). In order to identify the microstructure and morphology of the fabricated porous bio-nanocomposites, the X-ray diffraction (XRD), atomic force microscope (AFM) and scanning electron microscopy (SEM) are employed. Also, the biocompatibility and biodegradability of the manufactured scaffolds are examined by placing them in a simulated body fluid (SBF) for 21 days, their weight and pH changes are measured. The rate of degradation of the PCL-HA scaffold can be controlled by varying the percentage of its constituent components. Due to an increasing growth and activity of bone cells and the apatite formation on the free surface of the fabricated bio-nanocomposite implants as well as their reasonable mechanical properties, they have the potential to be used as a bone substitute. Additionally, with the aid of the experimentally extracted mechanical properties of the scaffolds, the vibrational characteristics of a beam-type implant made of the proposed porous bio-nanocomposites are explored. The results obtained from SEM image indicate that the scaffolds produced by the employed method have high total porosity (70%–85%) and effective porosity. The pore size is obtained between 60 and 200 μm, which is desirable for the growth and propagation of bone cells. Also, it is revealed that the addition of TiO2 nanoparticles leads to reduce the rate of dissolution of the fabricated bio-nanocomposite scaffolds.  相似文献   
3.
4.
Metallurgical and Materials Transactions A - The surface of implant materials is one of the most significant factors for controlling the interaction between biomaterials and bone tissues. Hence,...  相似文献   
5.

Dynamically crosslinked thermoplastic elastomer nanocomposites were synthesized as modifier for the bitumen binder-based asphalts. Linear low-density polyethylene (LLDPE) and styrene-butadiene rubber (SBR), with the ratio of 80/20, bitumen, and organically modified clay (OC) were all melt mixed in the presence of the sulfur curing system. The proposed mixing was carried out in an internal mixer at 160 °C with a rotor speed of 120 rpm. To enhance the molecular interactions between the polymer phases and the clay silicate layers, maleic anhydride-grafted LLDPE (PE-g-MA) with the maleiation degree of 50% was also incorporated into the mixture. Observation of the composite samples, using the scanning electron microscopy (SEM), revealed the matrix dispersed type of morphology for all dynamically vulcanized samples. X-ray diffraction (XRD) and transmission electron microscopy (TEM) examinations evidenced the exfoliation of the clay silicate layers with good dispersion. Rheomechanical spectrometry (RMS) was performed on the prepared nanocomposites. All dynamically vulcanized nanocomposites comprising 2.5% of OC exhibited shear-thinning behavior and non-terminal characteristics with a low frequency range. These indicate the formation of three-dimensional physical networks by the clay nanolayers throughout the LLDPE matrix. The presence of the bitumen in the composition of the prepared nanocomposites improved the flowability of the samples. This is a promising feature of the prepared nanocomposites to be used as an elastic and resistant modifier in the composition of the bitumen-based asphalts.

  相似文献   
6.
In this paper, we develop an efficient diagonal quadratic optimization formulation for minimum weight design problem subject to multiple constraints. A high-efficiency computational approach of topology optimization is implemented within the framework of approximate reanalysis. The key point of the formulation is the introduction of the reciprocal-type variables. The topology optimization seeking for minimum weight can be transformed as a sequence of quadratic program with separable and strictly positive definite Hessian matrix, thus can be solved by a sequential quadratic programming approach. A modified sensitivity filtering scheme is suggested to remove undesirable checkerboard patterns and mesh dependence. Several typical examples are provided to validate the presented approach. It is observed that the optimized structure can achieve lighter weight than those from the established method by the demonstrative numerical test. Considerable computational savings can be achieved without loss of accuracy of the final design for 3D structure. Moreover, the effects of multiple constraints and upper bound of the allowable compliance upon the optimized designs are investigated by numerical examples.  相似文献   
7.
Calcium (Ca) is a key micronutrient of high relevance for human nutrition that also influences the texture and taste of dairy products and their processability. In bovine milk, Ca is presented in several speciation forms, such as complexed with other milk components or free as ionic calcium while being distributed between colloidal and serum phases of milk. Partitioning of Ca between these phases is highly dynamic and influenced by factors, such as temperature, ionic strength, pH, and milk composition. Processing steps used during the manufacture of dairy products, such as preconditioning, concentration, acidification, salting, cooling, and heating, all contribute to modify Ca speciation and partition, thereby influencing product functionality, product yield, and fouling of equipment. This review aims to provide a comprehensive understanding of the influence of Ca partition on dairy products properties to support the development of kinetics models to reduce product losses and develop added-value products with improved functionality. To achieve this objective, approaches to separate milk phases, analytical approaches to determine Ca partition and speciation, the role of Ca on protein–protein interactions, and their influence on processing of dairy products are discussed.  相似文献   
8.
9.
A series of poly(acrylic acid-co-methylvinylketone–graft–sulfamethoxazole)(AVMDS) species was synthesized for drug carrier applications. The synthesis involved two steps: copolymerization of acrylic acid(AA) with methyl vinyl ketone(MVK) through the free radical route and subsequent grafting of the sulfamethoxazole (SMX) onto the copolymer via the Schiff base reaction of the primary amine of SMX with the carbonyl groups of the MVK units. The structures and properties of the materials were characterized by nuclear magnetic resonance(NMR), X-ray diffraction(XRD), differential scanning calorimetry(DSC), and scanning electronic microscopy (SEM). An in-vitro cytotoxicity test of the drug-carrier systems via MTT assay revealed no significant cytotoxic effect at concentrations up to 100?µg?·?ml?1. The dynamic release of SMX from these systems through a retro-imidation reaction (inverse Schiff base reaction) was investigated in depth, where the diffusion through the polymer matrix, the enhancement of the water solubility of SMX, the influence of the initial drug concentration, the pH of the medium, and the effect of the degree of swelling of the polymer matrix on the release dynamics were evaluated. The AVMGS4 and AVMGS1 drug carrier systems containing 3.58 and 1.18?wt% of SMX were the best performing systems.  相似文献   
10.
Dehydrins (DHNs) play an important role in abiotic stress tolerance in a large number of plants, but very little is known about the function of DHNs in pepper plants. Here, we isolated a Y1SK2-type DHN gene “CaDHN3” from pepper. To authenticate the function of CaDHN3 in salt and drought stresses, it was overexpressed in Arabidopsis and silenced in pepper through virus-induced gene silencing (VIGS). Sub-cellular localization showed that CaDHN3 was located in the nucleus and cell membrane. It was found that CaDHN3-overexpressed (OE) in Arabidopsis plants showed salt and drought tolerance phenotypic characteristics, i.e., increased the initial rooting length and germination rate, enhanced chlorophyll content, lowered the relative electrolyte leakage (REL) and malondialdehyde (MDA) content than the wild-type (WT) plants. Moreover, a substantial increase in the activities of antioxidant enzymes; including the superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and lower hydrogen peroxide (H2O2) contents and higher O2•− contents in the transgenic Arabidopsis plants. Silencing of CaDHN3 in pepper decreased the salt- and drought-stress tolerance, through a higher REL and MDA content, and there was more accumulation of reactive oxygen species (ROS) in the CaDHN3-silenced pepper plants than the control plants. Based on the yeast two-hybrid (Y2H) screening and Bimolecular Fluorescence Complementation (BiFC) results, we found that CaDHN3 interacts with CaHIRD11 protein in the plasma membrane. Correspondingly, the expressions of four osmotic-related genes were significantly up-regulated in the CaDHN3-overexpressed lines. In brief, our results manifested that CaDHN3 may play an important role in regulating the relative osmotic stress responses in plants through the ROS signaling pathway. The results of this study will provide a basis for further analyses of the function of DHN genes in pepper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号