首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   15篇
  国内免费   2篇
电工技术   5篇
化学工业   26篇
金属工艺   5篇
机械仪表   3篇
建筑科学   10篇
能源动力   10篇
轻工业   20篇
水利工程   4篇
石油天然气   8篇
无线电   14篇
一般工业技术   46篇
冶金工业   3篇
自动化技术   36篇
  2023年   2篇
  2022年   8篇
  2021年   12篇
  2020年   7篇
  2019年   10篇
  2018年   11篇
  2017年   15篇
  2016年   16篇
  2015年   12篇
  2014年   15篇
  2013年   25篇
  2012年   15篇
  2011年   11篇
  2010年   11篇
  2009年   9篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  1998年   2篇
排序方式: 共有190条查询结果,搜索用时 31 毫秒
1.
Porous bony scaffolds are utilized to manage the growth and migration of cells from adjacent tissues to a defective position. In the current investigation, the effect of titanium oxide (TiO2) nanoparticles on mechanical and physical properties of porous bony implants made of polymeric polycaprolactone (PCL) is studied. The bio-nanocomposite scaffolds are prepared with composition of nanocrystalline hydroxyapatite (HA) and TiO2 powder using the freeze-drying technique for different weight fractions of TiO2 (0 wt%, 5 wt%, 10 wt%, and 15 wt%). In order to identify the microstructure and morphology of the fabricated porous bio-nanocomposites, the X-ray diffraction (XRD), atomic force microscope (AFM) and scanning electron microscopy (SEM) are employed. Also, the biocompatibility and biodegradability of the manufactured scaffolds are examined by placing them in a simulated body fluid (SBF) for 21 days, their weight and pH changes are measured. The rate of degradation of the PCL-HA scaffold can be controlled by varying the percentage of its constituent components. Due to an increasing growth and activity of bone cells and the apatite formation on the free surface of the fabricated bio-nanocomposite implants as well as their reasonable mechanical properties, they have the potential to be used as a bone substitute. Additionally, with the aid of the experimentally extracted mechanical properties of the scaffolds, the vibrational characteristics of a beam-type implant made of the proposed porous bio-nanocomposites are explored. The results obtained from SEM image indicate that the scaffolds produced by the employed method have high total porosity (70%–85%) and effective porosity. The pore size is obtained between 60 and 200 μm, which is desirable for the growth and propagation of bone cells. Also, it is revealed that the addition of TiO2 nanoparticles leads to reduce the rate of dissolution of the fabricated bio-nanocomposite scaffolds.  相似文献   
2.
3.
In this research, a bimodal nanoporous Baghdadite (NB) (Ca3ZrSi2O9) was prepared by a modified sol-gel method using P123 as a surfactant. The effects of P123's contents on the structural and textural properties as well as the drug delivery behavior of NB were assessed in vitro. The usage of P123 offered a new route for the synthesis of NB. The synthesized NB samples with different amounts of P123 were studied through X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), N2 adsorption-desorption, field emission scanning electron microscopy (FESEM) equipped with energy-dispersive X-ray analysis spectroscopy (EDAX) and transmission electron microscopy (TEM). The results showed that a single-phase Baghdadite was obtained by this new method at the calcination temperature of 800?°C. It was found that an increase in P123's content up to 0.025?mol changed the morphology of NB samples from mountain-like to needle-like. The potential application of NB samples as drug delivery agents was assessed by estimating their release properties up to 240?h. This research revealed that the synthesized Baghdadite could be used as a potential nanoporous carrier with controlled release capability in bone tissue regeneration.  相似文献   
4.
The mechanical integrity of battery separators is critical for battery safety and durability. A comprehensive study of strain‐rate‐dependent tensile and puncture properties of a polypropylene lithium‐ion battery separator is presented here with a new model. Due to anisotropy of the polymeric membrane, tensile testing was conducted for different directions. Results showed that tensile strength and elastic modulus were increased 1000% and 500%, respectively, for different directions. It was also demonstrated that tensile strength changed 10 to 25% with strain rate (1.67 × 10?4 to 1.67 × 10?1 s?1) for different directions. An equation was obtained for the first time for flow stress versus strain rate at varied tensile directions with respect to machine direction. Moreover, puncture testing was performed and it was shown that puncture strength was increased 140% with increasing strain rate from 0.25 to 250 mm min?1. Two failure modes were also observed in puncture samples. Finally, Eyring's model was used to calculate activation enthalpy of the porous polypropylene separator. © 2020 Society of Chemical Industry  相似文献   
5.
We report the deformation behavior and mechanical properties of a polymeric micropillar, which measures approximately 10 μm by 30 μm in size by measuring the loading/unloading response using an in situ force measurement system. When the single poly(dimethylsiloxane) (PDMS) micropillar was subjected to compression, we observed a periodic wrinkle and global (Euler) buckling at the sidewall. During unloading, we found the pull-off force (adhesion force) to increase for higher values of preloading and also for lower loading/unloading rates. From the slope of the load–displacement curves measured in situ, we calculated the effective elastic stiffness of the PDMS micropillar to be about 2.03 MPa. In addition to the current work, we report that this method can be used more broadly for in situ measurement of the intrinsic mechanical and adhesion properties of polymers and other relatively soft materials.  相似文献   
6.
The charge, discharge, and total energy efficiencies of lithium‐ion batteries (LIBs) are formulated based on the irreversible heat generated in LIBs, and the basics of the energy efficiency map of these batteries are established. This map consists of several constant energy efficiency curves in a graph, where the x‐axis is the battery capacity and the y‐axis is the battery charge/discharge rate (C‐rate). In order to introduce the energy efficiency map, the efficiency maps of typical LIB families with graphite/LiCoO2, graphite/LiFePO4, and graphite/LiMn2O4 anode/cathode are generated and illustrated in this paper. The methods of usage and applications of the developed efficiency map are also described. To show the application of the efficiency map, the effects of fast charging, nominal capacity, and chemistry of typical LIB families on their energy efficiency are studied using the generated maps. It is shown how energy saving can be achieved via energy efficiency maps. Overall, the energy efficiency map is introduced as a useful tool for engineers and researchers to choose LIBs with higher energy efficiency for any targeted applications. The developed map can be also used by energy systems designers to obtain accurate efficiency of LIBs when they incorporate these batteries into their energy systems.  相似文献   
7.
Journal of Materials Science: Materials in Electronics - One of the ways to improve the performance of ceramic insulators in polluted climates is to use polymer coatings reinforced with ceramic...  相似文献   
8.
Jasour  Ashkan  Huang  Xin  Wang  Allen  Williams  Brian C. 《Autonomous Robots》2022,46(1):269-282
Autonomous Robots - This paper presents fast non-sampling based methods to assess the risk for trajectories of autonomous vehicles when probabilistic predictions of other agents’ futures are...  相似文献   
9.
10.
Modified rotating-jet electrospinning method (MRJM) is a new electrospinning technique with a novel setup including two metallic concentric hollow cylinders for generating highly aligned fibers. In this report, an experimental study was carried out to evaluate the effectiveness of MRJM for generating highly aligned nanofibers. For this purpose, the effect of voltage in the range of 10–22 kV, inner collector diameter in the range of 20–50 cm, and outer collector diameter in the range of 30–60 cm, on alignment degrees of electrospun fibers were explored and the results for each set of parameters were compared with those obtained for rotating-jet electrospinning method (RJM). The obtained results indicated that the alignment degrees of electrospun fibers in MRJM were significantly higher than those of RJM. The maximum achievable alignment degree in MRJM was around 82 % that was higher than the corresponding maximum value (40 %) of RJM. Although the effect of applied voltage on the degree of alignment in MRJM was observed to be negligible, it was experimentally proved that by manipulating the outer cylinder diameter, the degree of alignment can be increased up to 20 %. To achieve a conceptual understanding of the reason for significant influence of the outer cylinder on the elecrospinning performance, a formula was derived according to the Gauss’s law in the last part of this paper that relates the electric field strength inside the region between the inner cylinder and the spinneret to the radii of inner and outer cylinders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号