首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85743篇
  免费   1195篇
  国内免费   420篇
电工技术   813篇
综合类   2331篇
化学工业   11897篇
金属工艺   4816篇
机械仪表   3056篇
建筑科学   2272篇
矿业工程   567篇
能源动力   1231篇
轻工业   3662篇
水利工程   1277篇
石油天然气   347篇
无线电   9469篇
一般工业技术   16786篇
冶金工业   2752篇
原子能技术   259篇
自动化技术   25823篇
  2023年   60篇
  2022年   41篇
  2021年   136篇
  2020年   112篇
  2019年   111篇
  2018年   14512篇
  2017年   13447篇
  2016年   10060篇
  2015年   695篇
  2014年   377篇
  2013年   371篇
  2012年   3330篇
  2011年   9602篇
  2010年   8389篇
  2009年   5667篇
  2008年   6870篇
  2007年   7855篇
  2006年   192篇
  2005年   1242篇
  2004年   1169篇
  2003年   1207篇
  2002年   564篇
  2001年   119篇
  2000年   195篇
  1999年   77篇
  1998年   86篇
  1997年   45篇
  1996年   55篇
  1995年   22篇
  1994年   20篇
  1993年   21篇
  1992年   21篇
  1991年   32篇
  1990年   14篇
  1969年   24篇
  1968年   43篇
  1967年   33篇
  1966年   42篇
  1965年   44篇
  1964年   11篇
  1963年   28篇
  1962年   23篇
  1961年   18篇
  1960年   31篇
  1959年   35篇
  1958年   37篇
  1957年   36篇
  1956年   34篇
  1955年   63篇
  1954年   68篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Fluorescent fusion proteins are powerful tools for studying biological processes in living cells, but universal application is limited due to the voluminous size of those tags, which might have an impact on the folding, localization or even the biological function of the target protein. The designed biocatalyst trypsiligase enables site-directed linkage of small-sized fluorescence dyes on the N terminus of integral target proteins located in the outer membrane of living cells through a stable native peptide bond. The function of the approach was tested by using the examples of covalent derivatization of the transmembrane proteins CD147 as well as the EGF receptor, both presented on human HeLa cells. Specific trypsiligase recognition of the site of linkage was mediated by the dipeptide sequence Arg-His added to the proteins’ native N termini, pointing outside the cell membrane. The labeling procedure takes only about 5 minutes, as demonstrated for couplings of the fluorescence dye tetramethyl rhodamine and the affinity label biotin as well.  相似文献   
2.
A known strategy for improving the properties of layered oxide electrodes in sodium-ion batteries is the partial substitution of transition metals by Li. Herein, the role of Li as a defect and its impact on sodium storage in P2-Na0.67Mn0.6Ni0.2Li0.2O2 is discussed. In tandem with electrochemical studies, the electronic and atomic structure are studied using solid-state NMR, operando XRD, and density functional theory (DFT). For the as-synthesized material, Li is located in comparable amounts within the sodium and the transition metal oxide (TMO) layers. Desodiation leads to a redistribution of Li ions within the crystal lattice. During charging, Li ions from the Na layer first migrate to the TMO layer before reversing their course at low Na contents. There is little change in the lattice parameters during charging/discharging, indicating stabilization of the P2 structure. This leads to a solid-solution type storage mechanism (sloping voltage profile) and hence excellent cycle life with a capacity of 110 mAh g-1 after 100 cycles. In contrast, the Li-free compositions Na0.67Mn0.6Ni0.4O2 and Na0.67Mn0.8Ni0.2O2 show phase transitions and a stair-case voltage profile. The capacity is found to originate from mainly Ni3+/Ni4+ and O2-/O2-δ redox processes by DFT, although a small contribution from Mn4+/Mn5+ to the capacity cannot be excluded.  相似文献   
3.
The SARS-CoV-2 pandemic has created a great demand for a better understanding of the spread of viruses in indoor environments. A novel measurement system consisting of one portable aerosol-emitting mannequin (emitter) and a number of portable aerosol-absorbing mannequins (recipients) was developed that can measure the spread of aerosols and droplets that potentially contain infectious viruses. The emission of the virus from a human is simulated by using tracer particles solved in water. The recipients inhale the aerosols and droplets and quantify the level of solved tracer particles in their artificial lungs simultaneously over time. The mobile system can be arranged in a large variety of spreading scenarios in indoor environments and allows for quantification of the infection probability due to airborne virus spreading. This study shows the accuracy of the new measurement system and its ability to compare aerosol reduction measures such as regular ventilation or the use of a room air purifier.  相似文献   
4.
Histone deacetylase inhibitors (HDIs) are promising anti-cancer agents that inhibit proliferation of many types of cancer cells including breast carcinoma (BC) cells. In the present study, we investigated the influence of the Notch1 activity level on the pharmacological interaction between cisplatin (CDDP) and two HDIs, valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA, vorinostat), in luminal-like BC cells. The type of drug–drug interaction between CDDP and HDIs was determined by isobolographic analysis. MCF7 cells were genetically modified to express differential levels of Notch1 activity. The cytotoxic effect of SAHA or VPA was higher on cells with decreased Notch1 activity and lower for cells with increased Notch1 activity than native BC cells. The isobolographic analysis demonstrated that combinations of CDDP with SAHA or VPA at a fixed ratio of 1:1 exerted additive or additive with tendency toward synergism interactions. Therefore, treatment of CDDP with HDIs could be used to optimize a combined therapy based on CDDP against Notch1-altered luminal BC. In conclusion, the combined therapy of HDIs and CDDP may be a promising therapeutic tool in the treatment of luminal-type BC with altered Notch1 activity.  相似文献   
5.
The production of ceramic matrix composites (CMC) based on C/C-SiC is still very cost-intensive and therefore only economical for a few applications. The fabrication of the preforms involves many costs that need to be reduced. In this work, the shaping of the CFRP-preforms is realized by thermoset injection molding, which enables large-scale production. The polymeric matrix used is a multi-component matrix consisting of novolak resin, curing agent and lubricant. Six millimeter chopped carbon fiber with a proportion of 50 wt.% were used as a reinforcement. These ingredients are processed by an industrial equipment for compounding and injection molding in order to manufacture a CFRP demonstrator representing a brake disc. Test specimens are cut out of the demonstrator in different directions in order to investigate influences of flow direction and weld lines on microstructural and mechanical properties. Afterward, the CFRP samples were converted to C/C-SiC composites by the liquid silicon infiltration process. The article addresses the flow behavior of the compound during the injection molding and the building of the weld lines in the demonstrator. In addition, results of the directional dependence of the microstructural and mechanical properties within the fabricated disc in the different production steps are presented.  相似文献   
6.
The coupling of phonons to electrons and other phonons plays a defining role in material properties, such as charge and energy transport, light emission, and superconductivity. In atomic solids, phonons are delocalized over the 3D lattice, in contrast to molecular solids where localized vibrations dominate. Here, a hierarchical semiconductor that expands the phonon space by combining localized 0D modes with delocalized 2D and 3D modes is described. This material consists of superatomic building blocks (Re6Se8) covalently linked into 2D sheets that are stacked into a layered van der Waals lattice. Using transient reflectance spectroscopy, three types of coherent phonons are identified: localized 0D breathing modes of isolated superatom, 2D synchronized twisting of superatoms in layers, and 3D acoustic interlayer deformation. These phonons are coupled to the electronic degrees of freedom to varying extents. The presence of local phonon modes in an extended crystal opens the door to controlling material properties from hierarchical phonon engineering.  相似文献   
7.
There is a lack of reliable biomarkers for disorders of the central nervous system (CNS), and diagnostics still heavily rely on symptoms that are both subjective and difficult to quantify. The cerebrospinal fluid (CSF) is a promising source of biomarkers due to its close connection to the CNS. Extracellular vesicles are actively secreted by cells, and proteomic analysis of CSF extracellular vesicles (EVs) and their molecular composition likely reflects changes in the CNS to a higher extent compared with total CSF, especially in the case of neuroinflammation, which could increase blood–brain barrier permeability and cause an influx of plasma proteins into the CSF. We used proximity extension assay for proteomic analysis due to its high sensitivity. We believe that this methodology could be useful for de novo biomarker discovery for several CNS diseases. We compared four commercially available kits for EV isolation: MagCapture and ExoIntact (based on magnetic beads), EVSecond L70 (size-exclusion chromatography), and exoEasy (membrane affinity). The isolated EVs were characterized by nanoparticle tracking analysis, ELISA (CD63, CD81 and albumin), and proximity extension assay (PEA) using two different panels, each consisting of 92 markers. The exoEasy samples did not pass the built-in quality controls and were excluded from downstream analysis. The number of detectable proteins in the ExoIntact samples was considerably higher (~150% for the cardiovascular III panel and ~320% for the cell regulation panel) compared with other groups. ExoIntact also showed the highest intersample correlation with an average Pearson’s correlation coefficient of 0.991 compared with 0.985 and 0.927 for MagCapture and EVSecond, respectively. The median coefficient of variation was 5%, 8%, and 22% for ExoIntact, MagCapture, and EVSecond, respectively. Comparing total CSF and ExoIntact samples revealed 70 differentially expressed proteins in the cardiovascular III panel and 17 in the cell regulation panel. To our knowledge, this is the first time that CSF EVs were analyzed by PEA. In conclusion, analysis of CSF EVs by PEA is feasible, and different isolation kits give distinct results, with ExoIntact showing the highest number of identified proteins with the lowest variability.  相似文献   
8.
In this study, we aimed at fabricating decellularized bovine myocardial extracellular matrix-based films (dMEbF) for cardiac tissue engineering (CTE). The decellularization process was carried out utilizing four consecutive stages including hypotonic treatment, detergent treatment, enzymatic digestion and decontamination, respectively. In order to fabricate the dMEbF, dBM were digested with pepsin and gelation process was conducted. dMEbF were then crosslinked with N-hydroxysuccinimide/1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide (NHS/EDC) to increase their durability. Nuclear contents of native BM and decellularized BM (dBM) tissues were determined with DNA content analysis and agarose-gel electrophoresis. Cell viability on dMEbF for 3rd, 7th, and 14th days was assessed by MTT assay. Cell attachment on dMEbF was also studied by scanning electron microscopy. Trans-differentiation capacity of human adipose-derived mesenchymal stem cells (hAMSCs) into cardiomyocyte-like cells on dMEbF were also evaluated by histochemical and immunohistochemical analyses. DNA contents for native and dBM were, respectively, found as 886.11?±?164.85 and 47.66?±?0.09?ng/mg dry weight, indicating a successful decellularization process. The results of glycosaminoglycan and hydroxyproline assay, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), performed in order to characterize the extracellular matrix (ECM) composition of native and dBM tissue, showed that the BM matrix was not damaged during the proposed method. Lastly, regarding the histological study, dMEbF not only mimics native ECM, but also induces the stem cells into cardiomyocyte-like cells phenotype which brings it the potential of use in CTE.  相似文献   
9.
10.
In this study, three different configurations of a solid oxide fuel cell and gas microturbine hybrid system are evaluated for application in auxiliary power units. The first configuration is a common hybrid system in auxiliary power units, utilizing a fuel cell stack in the structure of the gas turbine cycle. The other configurations use two series and parallel fuel cell stacks in the structure of the gas turbine cycle. The main purpose of this research is thermodynamic analysis, evaluation of the performance of the proposed hybrid systems in similar conditions, and selection of an appropriate system in terms of efficiency, power generation, and entropy generation rate. In this study, the utilized fuel cells were subjected to electrochemical, thermodynamic, and thermal analyses and their working temperatures were calculated under various working conditions. Results indicate that the hybrid system with two series stacks had maximum power generation and efficiency compared with the other two cases. Moreover, the simple hybrid system and the system with two parallel stacks had relatively equal pure power generation and efficiency. According to the investigations, hybrid system with two series fuel cell stacks, which had 3424 and 1712 cells, respectively, can achieve the electrical efficiency of over 48%. A hybrid system with two parallel fuel cell stacks, in which each stack had 2568 cells, had the electrical efficiency of 46.3%. Findings suggested that maximum electrical efficiency occurred between the pressure ratios of 5–6 in the proposed hybrid systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号